SAJID FAROOQ

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Artigo IPEN-doc 29718
    Thermo-optical performance of bare laser-synthesized TiN nanofluids for direct absorption solar collector applications
    2023 - FAROOQ, SAJID; VITAL, CAIO V.P.; TIKHONOWSKI, GLEB; POPOV, ANTON A.; KLIMENTOV, SERGEY M.; MALAGON, LUIS A.G.; ARAUJO, RENATO E. de; KABASHIN, ANDREI V.; RATIVA, DIEGO
    Titanium nitride (TiN) nanoparticles (NPs) look very promising for solar energy harvesting owing to a strong plasmonic absorption with the maximum in the near-infrared range. However, the synthesis of TiN nanofluids is very challenging as one has to combine the plasmonic feature and long-term colloidal stability to withstand harsh conditions of direct absorption solar collectors (DASC). Here, we explore solutions of bare (ligand free) TiN NPs synthesized by pulsed laser ablation in acetone as the nanofluid. We show that such NPs are low size-dispersed (mean size 25 nm) and exhibit a broad absorption peak around 700 nm, while their negative charge ensures a prolonged electrostatic stabilization of solutions. Solar weighted absorption coefficient of such TiN nanofluids reaches 95.7% at very low volume fractions (1.0 × 10−5), while nanofluid temperature can be increased up to 29 °C under 1.25-sun illumination. Our data evidence that the thermal efficiency of a DASC using TiN nanofluid is 80% higher compared to Au-based counterparts. The recorded high photothermal efficiency and excellent colloidal stability of TiN nanofluids promises a major advancement of DASC technology, while laser-ablative synthesis can offer easy scalability and relative cost-efficiency required for the implementation of systems for solar energy harvesting.
  • Artigo IPEN-doc 29000
    High performance blended nanofluid based on gold nanorods chain for harvesting solar radiation
    2023 - FAROOQ, SAJID; RATIVA, DIEGO; SAID, ZAFAR; ARAUJO, RENATO E. de
    Colloids composed of metallic nanoparticles are promising working fluids for solar radiation harvesting using Direct Absorption Solar Collectors (DASC), due to a high thermal conductivity characteristic and a broad optical absorption that can be tuned to match the solar spectrum. Recently, different studies report gold nanorod (Au-NR) chains for biosensing and photothermal applications, which have broadband and high absorption cross-section and potential possibilities to orientate the nanoparticle using electromagnetic fields. Moreover, colloids with nanoparticles blended configuration show an efficient solar radiation absorption characteristics. Here, working fluids for DASC based on gold nanorod chains in an unblended and blended configuration are evaluated using numerical simulations. The results indicate that the solar absorption increases proportional to the size of the Au-NR assembly, and the best configuration is obtained for a tetramer structure. By using different blended arrangements such as single Au monomers, dimers, trimmers, and tetramers nanorods, it is possible to obtain solar weighted absorption coefficients close to an ideal solar thermal collector, even obtained at low volume fraction (1×10(−5)). Moreover, the results show an enhancement of the temperature of 58.45 °C for tetramer compared with a monomer structure, both under one sun excitation. Therefore, the Au-NR assembly shows a high potentiality to be explored as a high-performance working fluid for solar thermal collectors.