SAJID FAROOQ

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • Artigo IPEN-doc 30225
    Diabetes monitoring through urine analysis using ATR-FTIR spectroscopy and machine learning
    2023 - FAROOQ, SAJID; ZEZELL, DENISE M.
    Diabetes mellitus (DM) is a widespread and rapidly growing disease, and it is estimated that it will impact up to 693 million adults by 2045. To cope this challenge, the innovative advances in non-destructive progressive urine glucose-monitoring platforms are important for improving diabetes surveillance technologies. In this study, we aim to better evaluate DM by analyzing 149 urine spectral samples (86 diabetes and 63 healthy control male Wistar rats) utilizing attenuated total reflection–Fourier transform infrared (ATR-FTIR) spectroscopy combined with machine learning (ML) methods, including a 3D discriminant analysis approach—3D–Principal Component Analysis–Linear Discriminant Analysis (3D-PCA-LDA)—in the ‘bio-fingerprint’ region of 1800–900 cm−1 . The 3D discriminant analysis technique demonstrated superior performance compared to the conventional PCA-LDA approach with the 3D-PCA-LDA method achieving 100% accuracy, sensitivity, and specificity. Our results show that this study contributes to the existing methodologies on non-destructive diagnostic methods for DM and also highlights the promising potential of ATR-FTIR spectroscopy with an ML-driven 3D-discriminant analysis approach in disease classification and monitoring.
  • Artigo IPEN-doc 29788
    Rapid identification of breast cancer subtypes using micro-FTIR and machine learning methods
    2023 - FAROOQ, SAJID; DEL-VALLE, MATHEUS; SANTOS, MOISES O. dos; SANTOS, SOFIA N. dos; BERNARDES, EMERSON S.
    Breast cancer (BC) molecular subtypes diagnosis involves improving clinical uptake by Fourier transform infrared (FTIR) spectroscopic imaging, which is a non-destructive and powerful technique, enabling label free extraction of biochemical information towards prognostic stratification and evaluation of cell functionality. However, methods of measurements of samples demand a long time to achieve high quality images, making its clinical use impractical because of the data acquisition speed, poor signal to noise ratio, and deficiency of optimized computational framework procedures. To address those challenges, machine learning (ML) tools can facilitate obtaining an accurate classification of BC subtypes with high actionability and accuracy. Here, we propose a ML-algorithmbased method to distinguish computationally BC cell lines. The method is developed by coupling the K-neighbors classifier (KNN) with neighborhood components analysis (NCA), and hence, the NCA-KNN method enables to identify BC subtypes without increasing model size as well as adding additional computational parameters. By incorporating FTIR imaging data, we show that classification accuracy, specificity, and sensitivity improve, respectively, 97.5%, 96.3%, and 98.2%, even at very low co-added scans and short acquisition times. Moreover, a clear distinctive accuracy (up to 9 %) difference of our proposed method (NCA-KNN) was obtained in comparison with the second best supervised support vector machine model. Our results suggest a key diagnostic NCA-KNN method for BC subtypes classification that may translate to advancement of its consolidation in subtype-associated therapeutics.
  • Artigo IPEN-doc 29303
    Superior Machine Learning Method for breast cancer cell lines identification
    2022 - FAROOQ, SAJID; CARAMEL-JUVINO, AMANDA; DEL-VALLE, MATHEUS; SANTOS, SOFIA; BERNARDES, EMERSON S.; ZEZELL, DENISE M.
    We propose an artificial intelligence platform based on machine learning (ML) algorithm using Neighborhood Component analysis and K-Nearest Neighbors for breast cancer cell lines recognition. Our model presents up to 97% accuracy for identification of breast cancer cell lines.