OSVALDO LUIZ DA COSTA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 10 de 19
  • Resumo IPEN-doc 26660
    Production of iodine-125 in nuclear reactors
    2011 - ZEITUNI, CARLOS A.; ROSTELATO, MARIA E.C.M.; JAE-SON, KWANG; LEE, JUN S.; COSTA, OSVALDO L.; MOURA, JOÃO A.; FEHER, ANSELMO; MOURA, EDUARDO S.; SOUZA, CARLA D.; MATTOS, FABIO R.; PELEIAS JUNIOR, FERNANDO S.; KARAM JUNIOR, DIB
    Cancer is one of the worst illnesses in the world and one of the major causes of death in Brazil [1,2]. For this reason, the Nuclear Energy National Commission (CNEN) started a project to produce some medical radioisotopes to treat cancer. One of the main products is the iodine-125 seeds [3]. This iodine seed can be used to treat several kinds of cancer: prostate, lung, eye, brain. As Brazil will construct a new reactor to produce radioisotopes, it is necessary define how the iodine-125 production will carry out [4,5]. The main reaction of this production is the irradiation of the enriched xenon-124 in gaseous form. Xe-124 changed to Iodine-125 by neutron capture following in two decays: Xe-124 (n, y) —• Xe-125m (57s) —• I- 125 or Xe-124 (n, y) —• Xe-125 (19.9 h) —• 1-125. However the production in reactors is the most common technique used, there is one disadvantage to use it: the production of iodine- 126 after several hours of irradiation. Iodine-126 has a half life of 13.1 days and it has some usefulness emitters for medical uses. Iodine-126 is considered a contamination [6]. For all these reasons, the IPEN/CNEN-SP research group decided for two techniques of production: in batch or continuous system. The production in batch consists in a sealed capsule that is placed in the reactor core for around 64 hours. In this type of production, some iodine-126 is produced and a certain quantity of Xe-124 is not activated. Normally, it needs to wait around 5 to 7 iodine-126 half-lives to guarantee the decrease of the activity of the contamination. This time will make Iodine-125 with only 50% till 34% of the initial production. The second technique is the continuous production using a cryogenic system. This technique consists in two capsules: one inside the reactor core and the second one out of the neutron flux. These two capsules will be linked with two cryogenic pumps to guarantee that all iodine-125 produced in the core will be take off the reactor core. The great disadvantage of this technique is the using of two positions in the core of the reactor. Brazil will have only one radioisotope reactor producing. And like there is a huge quantity of materials to be produced, it is not a guarantee the position in the reactor for this production. Besides of that the seeds production in Brazil is only 3000 per month, which demands around 3.5 Ci per month. The batch production produces a low quantity per reactor cycle of iodine-125, but this low quantity can be more than that [2,3].
  • Resumo IPEN-doc 26564
    Preliminary proposal for radioactive liquid waste management in a brachytherapy sources production laboratory
    2011 - SOUZA, CARLA D.; VICENTE, ROBERTO; ROSTELATO, MARIA E.C.M.; ZEITUNI, CARLOS A.; MOURA, JOÃO A.; MOURA, EDUARDO S.; MATTOS, FABIO R.; FEHER, ANSELMO; COSTA, OSVALDO L. da; VIANNA, ESTANISLAU B.; CARVALHO, LAERCIO de; KARAN JUNIOR, DIB
    Malignant tumors are responsible for a high death rate in the entire world population (1). Prostate cancer is the third most common among men, after skin and lung. The treatment using permanent Iodine-125 seed are too costly, preventing the use in large scale (1) (2). A multidisciplinary team was formed to develop a source of Iodine-125 and assemble a national facility for local production. For the production correct implementation, a plan for radiological protection that has the management of radioactive waste fully specified are necessary. This work has developed an initial liquid waste management proposal. The most important Iodine-125 liquid waste is generated in the first phase of the process, radioactive material fixation. The initial proposal is that the waste is deposited in a 20 L container (2 years to fill). The final activity of this container is 4.93 x 1011 Bq. According to the discharge limits presented in the brazilian's regulation CNEN - NE - 605 - Management of radioactive wastes in radioactive facilities (3) this waste could safely be release to the environment in 3.97 years. In the other hand,if a minimization waste policy will be implemented, the production could becomes more efficient and cheaper. Waste storage at 25 L containers and changing some production parameters results in 3 years waste to be eliminated in 3.94 years. This new plan will optimize the materials used and diminished the waste generation facilitating the management, contributing to a cheaper product.
  • Artigo IPEN-doc 27743
    Gamma spectrometry of iodine-125 produced in IEA-R1 nuclear reactor, using HPGe detector and fixation into epoxy matrix disc
    2021 - COSTA, OSVALDO L. da; SOUZA, DAIANE C.B. de; CASTANHO, FABIO G.; FEHER, ANSELMO; MOURA, JOÃO A.; SOUZA, CARLA D.; OLIVEIRA, HENRIQUE B.; MADUAR, MARCELO F.; ZEITUNI, CARLOS A.; ROSTELATO, MARIA E.C.M.
    Few places in the world produce iodine-125. In Brazil, the first production was achieved by using the IEA-R1 nuclear reactor located at Nuclear and Energy Research Institute – IPEN. To verify the quality of iodine-125 produced, and the amount of contaminants such as iodine-126, cesium-134 and caesium-137 among others, iodine-125 samples were immobilized into epoxy matrix disc, with the same geometry of a barium-133 reference radioactive source, used to calibrate an HPGe detector. The HPGe detector has a thin carbon composite window, which allows measure the iodine-125 photopeaks, between 27.1 and 35.4 keV. The method employed here was successful in producing and measurement of iodine-125.
  • Artigo IPEN-doc 27362
    New core configuration for the fabrication of 125I radioactive sources for cancer treatment
    2020 - SOUZA, CARLA D. de; ZEITUNI, CARLOS A.; FEHER, ANSELMO; MOURA, JOÃO A.; COSTA, OSVALDO L. da; ANGELOCCI, LUCAS V.; ROSTELATO, MARIA E.C.M.
    In order to provide prostate brachytherapy treatment for more Brazilian men, IPEN is building a laboratory for the manufacture of radioactive sources. The new methodology for the production of iodine-125 seeds with yield 71.7% ± 5.3%. Points of importance were evaluated/discussed: photo-sensibility, reaction vial type, the substitution for iodine-131, pH, and solution volume. The surface was analyzed by FTIR and EDS. At the end, a Monte Carlo-MCNP6 simulation was performed to evaluate the TG-43 parameters.
  • Artigo IPEN-doc 26206
    Gamma spectrometry of iodine-125 produced in IEA-R1 nuclear reator, using HPGe detector and fixation into epoxy matrix disc
    2019 - COSTA, OSVALDO L. da; SOUZA, DAIANE C.B. de; CASTANHO, FABIO G.; FEHER, ANSELMO; MOURA, JOÃO A.; SOUZA, CARLA D. de; OLIVEIRA, HENRIQUE B. de; MADUAR, MARCELO F.; ZEITUNI, CARLOS A.; ROSTELATO, MARIA E.C.M.
    Few places in the world produce iodine-125. In Brazil, the first production happened in nuclear reactor IEA-R1 located at Nuclear and Energy Research Institute – IPEN. To verify the quality of iodine-125 produced, because contaminants as iodine-126, caesium-134 and caesium-137 among others, may be produced in irradiation process, iodine-125 samples were immobilized into epoxy matrix disc, with the same geometry of a barium-133 reference radioactive source, used to calibrate an HPGe detector. The HPGe detector has a thin carbon composite window, which allows measure the iodine-125 photopeaks, between 27.1 and 35.4 keV.
  • Artigo IPEN-doc 24133
    Brazilian demand for iodine-125 seeds in cancer treatment after a decade of medical procedures
    2017 - COSTA, OSVALDO L. da; SOUZA, DAIANE C.B. de; FEHER, ANSELMO; MOURA, JOAO A.; SOUZA, CARLA D.; OLIVEIRA, HENRIQUE B. de; PELEIAS JUNIOR, FERNANDO S.; ZEITUNI, CARLOS A.; ROSTELATO, MARIA E.C.M.
  • Resumo IPEN-doc 23458
    Brazil radioactive sources production for cancer treatment
    2016 - ROSTELATO, MARIA E.; SOUZA, CARLA D.; ZEITUNI, CARLOS A.; MOURA, JOAO A.; MARQUES, JOSE R.O.; COSTA, OSVALDO L.; FEHER, ANSELMO; RODRIGUES, BRUNA T.; SOUZA, DAIANE C.B. de; PELEIAS JUNIOR, FERNANDO S.; SORGATTI, ANDERSON; MOSCA, RODRIGO; MOURA, EDUARDO S. de; ABREU, RODRIGO T.; SOUZA, RAQUEL V. DE; NOGUEIRA, BEATRIZ R.
    The modality, known as brachytherapy, was performed in Brazil by only a hand full of hospitals at an extremely high cost. For producing new sources, five major areas must be considered: 1) source production: nuclear activation and/or radiochemical reaction; 2) welding; 3) Quality control: leakage tests; 4) Dosimetry and metrology; 5) Operational procedures; 6) validation studies. To perform all steps, a multidisciplinary team works together to overcome difficulties. - Iridium-192 pellets: In Brazil there are 140 machines with pellets that replacement every 5 years. Our new production line has assembly, welding and quality control hot cells. - Iridium-192 wires: Produced since 1999. The wire is activated at IPENs IEA-R1 reactor for 30 hours with 5x1013 n/cm-2.s-1 neutron flux resulting in 192 mCi maximum activity. - Iridium-192 seed: New seed for ophthalmic cancer treatment. The irradiation device presented 90% activity homogeneity. We are still testing in-vivo. - Iodine-125 seeds: Largely used in low dose brachytherapy. I-125 binding yield achieved with our new reaction was 80%; Laser welding presented 70% efficiency. Approved in all leakage tests. - Other ongoing projects: Veterinary brachytherapy, Waste management, Radionecrosis healing with laser, calibrations sources production, linear accelerator calculations for hospitals, sources with polymeric matrix Our Iodine-125 seeds will be available in 2018. All other projects are advancing. We will continue to develop new products hoping to help the Brazilian population fight against cancer. For producing new sources, five major areas must be considered: 1) source production: nuclear activation and/or radiochemical reaction; 2) welding; 3) Quality control:eakage tests; 4) Dosimetry and metrology; 5) Operational procedures; 6) validation studies. To perform all steps, a multidisciplinary team works together to overcome difficulties
  • Resumo IPEN-doc 23127
    Experiment to access Iodine-125 leakage in different vials
    2017 - SOUZA, C.D. de; ROSTELATO, M.C.M.; ZEITUNI, C.; COSTA, O. da; RODRIGUES, B.T.; GONZALEZ, A.C.; MARQUES, J. de O.
    Purpose: There are several challenges when developing a laboratory to produce radioactive sources. From choosing a prototype to radiation safety, the task is enormous. During the past 15 years, our research group is developing a laboratory to produce iodine-125 seed. These seeds are placed inside the cancer and release radiation directly in the target. The whole production line is full of new process and innovations. Among those, a new chemical reaction that deposit iodine-125 onto silver (core) was developed. This paper presents a comparison between vials in order to access their capability to retain radioactive iodine. Also, the fixation percentage in a silver core was taken into account. This information will be used to select a vial to be implemented at the iodine-125 sources manufacture laboratory. Methods: Vials made with polymers and glass was tested. Iodine-125 were placed in the vials overnight at rt. Seven vials with different materials (glass, dark glass, and plastics) were evaluated. Results: The selected vial (borosilicate glass 1 mL total volume) loss 17.61% of iodine in 24 hours and presented the highest iodine intake. It was noticeable that the vial material influenced both iodine intake and iodine loss. The goal is to maximize the reaction yield to result in a less costly product. Conclusion: We have selected the best vial for our reaction in regards to leakage and yield.
  • Artigo IPEN-doc 22887
    Surface coating and study of metallic cores for radioactive sources production used in cancer treatment
    2016 - ROSTELATO, M.E.C.M.; SOUZA, C.D.; ZEITUNI, C.A.; MATTOS, F.R.; MARQUES, J.R.O.; MOURA, J.A.; FEHER, A.; COSTA, O.L.; SOUZA, D.C.B.; TIEZZI, R.; RODRIGUES, B.T.; KARAM JUNIOR, D.
    Developing new and innovative treatments for cancer is an urgent matter. The National Institute of Cancer estimates that Brazil will have 576,000 new cases of the disease in 2015. Our research group is developing new radioactive seeds to be use in radiotherapy procedures since the early 2000’s. We present the surface study and research for two of our major projects: iodine-125 seeds for prostate, brain and eye cancer treatment and iridium-192 for eyecancer treatment.
  • Artigo IPEN-doc 22420
    Comparing different methods for radioactive iodine fixation intended for brachytherapy sources manufacture
    2016 - SOUZA, CARLA D.; ROSTELATO, MARIA E.C.M.; ZEITUNI, CARLOS A.; PELEIAS JUNIOR, FERNANDO S.; BENEGA, MARCOS A.G.; MOURA, JOAO A.; FEHER, ANSELMO; COSTA, OSVALDO L.; TIEZZI, RODRIGO; RODRIGUES, BRUNA T.; SILVA, THAIS H. da; SORGATTI, ANDERSON; SOUZA, DAIANE C.B. de
    Brachytherapy, a method of radiotherapy, is being extensively used in the early and intermediate stages of the illness. In this treatment, radioactive seeds are placed inside or next to the area requiring treatment, which reduces the probability of unnecessary damage to surrounding healthy tissues. Currently, the radioactive isotope iodine-125, fixated on silver substrate, is one of the most used in prostate brachytherapy. The present study compares several deposition methods of radioactive iodine on silver substrate, in order to choose the most suitable one to be implemented at the laboratory of radioactive sources production of IPEN. Three methods were selected: method 1 (test based on electrodeposition method, developed by David Kubiatowicz) which presented efficiency of 65.16%; method 2 (chemical reaction based on the method developed by David Kubiatowicz - HCl) which presented efficiency of 70.80%; method 3 (chemical reaction based on the method developed by Dr. Maria Elisa Rostelato) which presented efficiency of 55.80%. Based on the results, the second method is the suggested one to be implemented at the laboratory of radioactive sources production of IPEN.