LUCAS RAMOS DE PRETTO

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 4 de 4
  • Resumo IPEN-doc 22998
    Periodontal treatment combined to antimicrobial photodynamic therapy
    2017 - GODOY-MIRANDA, BIANCA; BELINELLO-SOUZA, ESTEFANI; ALVARENGA, LETICIA; LEAL, CINTIA; LEITE, CAROLINA; LIMA, TAIRINE; PREVIATI-OLIVEIRA, JHOSEPHER; FREITAS, ANDERSON; PRETTO, LUCAS de; FERNANDES, ADJACI; PRATES, RENATO
    Background: Antimicrobial photodynamic therapy (APDT) has been used as an adjuvant treatment for periodontitis. It combines a photosensitizer (PS) with a light source to induce reactive oxygen species (ROS) and kill microbial cells. PpNetNI is a protoporphyrin derivate, and it has a chemical binding site at biofilm and great affinity to microbial cells. The aim of this study was to investigate the effects of APDT as an adjuvant treatment for periodontitis. Study: Ten healthy male rats Wistar (Rattus norvegicus) were used in this study (Approved by UNINOVE Ethical committee AN0029/2015). Periodontitis was induced by placing a cotton ligature around the first mandibular molar in a subgingival position. The contralateral mandibular first molar received neither a ligature nor any treatment, and was used as a control. After 7 days, the ligature was removed and all animals received scaling and root planning (SRP) and were divided according to the following treatments: SRP group (received SRP and irrigation with PpNetNI, 10 mM) and PDT group (PpNetNI 10 mM followed by LED irradiation). PDT was performed with a LED (630 nm) with an output power of 400mW (fluence-rate 200mW/cm2; fluence 18 J/cm2). Rats were euthanized at 7 days postoperatively. The bone loss was measured by Optical Coherence Tomography (OCT, THORLABS LTD., Newton, US). Data were analyzed statistically (Mann-Whitney test, p<0.05). in vestibular region of the first molar Results: The animals treated by APDT showed a bone gain of approximately 30% compared to the SRP group following 7 days from the treatment. OCT was able to detect bone loss in the samples and it was nondestructive method for this experimental model. Conclusion: In conclusion, within the parameters used in this study, APDT was an effective alternative to held periodontal health after treatment, and it was able to regenerate supportive periodontal tissue.
  • Artigo IPEN-doc 23079
    Antimicrobial photodynamic therapy combined to periodontal treatment: experimental model
    2017 - BELINELLO-SOUZA, ESTEFANI L.; ALVARENGA, LETICIA H.; LIMA-LEAL, CINTIA; ALMEIDA, PATRICIA; LEITE, CAROLINA G.; LIMA, TAIRINE R.; GODOY-MIRANDA, BIANCA; PREVIATI-OLIVEIRA, JHOSEPHER; PRETTO, LUCAS de; FREITAS, ANDERSON Z. de; FERNANDES, ADJACI U.; MARCOS, RODRIGO L.; PRATES, RENATO A.
    tBackground: Antimicrobial photodynamic therapy (aPDT) has been used as an adjuvant treatment forperiodontitis. It combines a photosensitizer with a light source to induce reactive oxygen species and killmicrobial cells. PpNetNI is a protoporphyrin derivative, and it has a chemical binding site at biofilm andgreat affinity to microbial cells. The aim of this study was to investigate the effects of aPDT as an adjuvanttreatment for periodontitis.Methods: Thirty healthy male rats Wistar (Rattus norvegicus) were used in this study (Approved by UNI-NOVE Ethical committee AN0029/2015). Periodontitis was induced by placing a cotton ligature aroundthe first mandibular molar in a subgengival position. The contralateral mandibular first molar receivedneither a ligature nor any treatment, and was used as a control. After 7 days, the ligature was removedand all animals received scaling and root planing (SRP) and were divided according to the following treat-ments: SRP group (received SRP and irrigation with PpNetNI, 10 M) and aPDT group (PpNetNI 10 Mfollowed by LED irradiation). aPDT was performed with a LED (630 nm) with an output power of 400 mW(fluence-rate 200 mW/cm2; fluence 18 J/cm2). Rats were euthanized at 24 h, 48 h and 7 days postopera-tively. The area of bone loss in vestibular region of the first molar was evaluated by Optical CoherenceTomography (OCT, THORLABS LTD., Ely, UK). Data were analyzed statistically (ANOVA and Tukey tests,p < 0.05).Results: The animals treated by aPDT showed bone gain of approximately 30% compared to the SRP groupfollowing 7 days from the treatment.Conclusion: aPDT promoted bone recovery 7 days after periodontal intervention.
  • Artigo IPEN-doc 22842
    Optical coherence tomography for blood glucose monitoring in vitro through spatial and temporal approaches
    2016 - PRETTO, LUCAS R. de; YOSHIMURA, TANIA M.; RIBEIRO, MARTHA S.; FREITAS, ANDERSON Z. de
    As diabetes causes millions of deaths worldwide every year, new methods for blood glucose monitoring are in demand. Noninvasive approaches may increase patient adherence to treatment while reducing costs, and optical coherence tomography (OCT) may be a feasible alternative to current invasive diagnostics. This study presents two methods for blood sugar monitoring with OCT in vitro. The first, based on spatial statistics, exploits changes in the light total attenuation coefficient caused by different concentrations of glucose in the sample using a 930-nm commercial OCT system. The second, based on temporal analysis, calculates differences in the decorrelation time of the speckle pattern in the OCT signal due to blood viscosity variations with the addition of glucose with data acquired by a custom built Swept Source 1325-nm OCT system. Samples consisted of heparinized mouse blood, phosphate buffer saline, and glucose. Additionally, further samples were prepared by diluting mouse blood with isotonic saline solution to verify the effect of higher multiple scattering components on the ability of the methods to differentiate glucose levels. Our results suggest a direct relationship between glucose concentration and both decorrelation rate and attenuation coefficient, with our systems being able to detect changes of 65 mg∕dL in glucose concentration.
  • Artigo IPEN-doc 22440
    Microfluidic volumetric flow determination using optical coherence tomography specke: An autocorrelation approach
    2016 - PRETTO, LUCAS R. de; NOGUEIRA, GESSE E.C.; FREITAS, ANDERSON Z.