LUCAS RAMOS DE PRETTO

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • Artigo IPEN-doc 30181
    Relationship between nonperfusion area from widefeld optical coherence tomography angiography and macular vascular parameters in diabetic retinopathy
    2023 - KONNO, AMI; ISHIBAZAWA, AKIHIRO; PRETTO, LUCAS de; SHIMOUCHI, AKITO; OMAE, TSUNEAKI; SONG, YOUNG‑SEOK
    Purpose To evaluate the relationship between the nonperfusion area (NPA) from widefield optical coherence tomography angiography (OCTA) and macular vascular parameters in diabetic retinopathy (DR). Methods In total, 51 eyes from 51 patients with proliferative DR (PDR) or moderate/severe non-PDR were included. Widefield OCTA using the Zeiss Plex Elite 9000 was performed. A semi-automatic algorithm calculated the percentages of the NPA within the total image. Macular OCTA (3 × 3 mm and 6 × 6 mm area) was scanned using the RTVue-XR Avanti. Vessel density (VD) was automatically separated into the superficial (SCP) and deep capillary plexus (DCP), and foveal avascular zone (FAZ) measurements were computed according to the parafoveal (1–3 mm) and perifoveal (3–6 mm) regions. Results A negative correlation was found between the average VD of the SCP and DCP obtained 3 × 3 mm and 6 × 6 mm area and the NPA. Multiple regression analysis revealed that the temporal–perifoveal region most negatively correlated with the NPA (r =  − 0.55, p < 0.0001). No correlation was found between FAZ measurements and DR severity (area, p = 0.07; perimeter, p = 0.13). Conclusion Diabetic macular nonperfusion was significantly associated with the NPA from widefield OCTA. In particular, the temporal–perifoveal DCP disorder may be a sensitive indicator of wide NPA.
  • Artigo IPEN-doc 26892
    Quantification of retinal capillary nonperfusion in diabetics using wide-field optical coherence tomography angiography
    2020 - ALIBHAI, A.Y.; PRETTO, LUCAS R. de; MOULT, ERIC M.; OR, CHRIS; ARYA, MALVIKA; MCGOWAN, MITCHELL; CARRASCO-ZEVALLOS, OSCAR; LEE, BYUNGKUN; CHEN, SIYU; BAUMAL, CAROLINE R.; WITKIN, ANDRE J.; REICHEL, ELIAS; FREITAS, ANDERSON Z. de; DUKER, JAY S.; FUJIMOTO, JAMES G.; WAHEED, NADIA K.
    Purpose: To combine advances in high-speed, wide-field optical coherence tomography angiography (OCTA) with image processing methods for semiautomatic quantitative analysis of capillary nonperfusion in patients with diabetic retinopathy (DR). Methods: Sixty-eight diabetic patients (73 eyes), either without retinopathy or with different degrees of retinopathy, were prospectively recruited for volumetric swept-source OCTA imaging using 12 mm · 12 mm fields centered at the fovea. A custom, semiautomatic software algorithm was used to quantify areas of capillary nonperfusion. Results: The mean percentage of nonperfused area was 0.1% (95% confidence interval: 0.0–0.4) in the eyes without DR; 2.1% (95% confidence interval: 1.2–3.7) in the nonproliferative DR eyes (mild, moderate, and severe), and 8.5% (95% confidence interval: 5.0–14.3) in the proliferative DR eyes. The percentage of nonperfused area increased in a statistically significant manner from eyes without DR, to eyes with nonproliferative DR, to eyes with proliferative DR. Conclusion: Capillary nonperfusion area in the posterior retina increases with increasing DR severity as measured by swept-source OCTA. Quantitative analysis of retinal nonperfusion on wide-field OCTA may be useful for early detection and monitoring of disease in patients with diabetes and DR.
  • Artigo IPEN-doc 26419
    Controlling for artifacts in widefield optical coherence tomography angiography measurements of non-perfusion area
    2019 - PRETTO, LUCAS R. de; MOULT, ERIC M.; ALIBHAI, A.Y.; CARRASCO-ZEVALLOS, OSCAR M.; CHEN, SIYU; LEE, BYUNGKUN; WITKIN, ANDRE J.; BAUMAL, CAROLINE R.; REICHEL, ELIAS; FREITAS, ANDERSON Z. de; DUKER, JAY S.; WAHEED, NADIA K.; FUJIMOTO, JAMES G.
    The recent clinical adoption of optical coherence tomography (OCT) angiography (OCTA) has enabled non-invasive, volumetric visualization of ocular vasculature at micron-scale resolutions. Initially limited to 3 mm × 3 mm and 6 mm × 6 mm fields-of-view (FOV), commercial OCTA systems now offer 12 mm × 12 mm, or larger, imaging fields. While larger FOVs promise a more complete visualization of retinal disease, they also introduce new challenges to the accurate and reliable interpretation of OCTA data. In particular, because of vignetting, wide-field imaging increases occurrence of low-OCT-signal artifacts, which leads to thresholding and/or segmentation artifacts, complicating OCTA analysis. This study presents theoretical and case-based descriptions of the causes and effects of low-OCTsignal artifacts. Through these descriptions, we demonstrate that OCTA data interpretation can be ambiguous if performed without consulting corresponding OCT data. Furthermore, using wide-field non-perfusion analysis in diabetic retinopathy as a model widefield OCTA usage-case, we show how qualitative and quantitative analysis can be confounded by low-OCT-signal artifacts. Based on these results, we suggest methods and best-practices for preventing and managing low-OCT-signal artifacts, thereby reducing errors in OCTA quantitative analysis of non-perfusion and improving reproducibility. These methods promise to be especially important for longitudinal studies detecting progression and response to therapy.