ESPERIDIANA AUGUSTA BARRETOS DE MOURA

Resumo

Graduated in Chemical Engineering at Faculdade Oswaldo Cruz (1983), Master in Nuclear Technology - Applications at IPEN / USP (1999), Ph.D. in Nuclear Technology - Applications at IPEN / USP (2006) and Post-Doctorate at Center for Advanced Materials ( T-CAM) from Tuskegee University, AL, USA. The main lines of research are: Synthesis of metallic nanoparticles; Obtaining and characterization of nanoparticles from mineral activity and agroindustry residues; Micro and nanofiller functionalization; Synthesis and reduction of graphene oxide; Development and modification of composite materials based on conventional and biodegradable polymers with vegetable fibers, micro and nanofillers of renewable origin; Development of biodegradable, active and intelligent plastic packaging for food, cosmetics, medical and pharmaceutical products; Development of conductive polymeric materials; Development of biomaterials for application in the regeneration of bone and dental tissue. (Text obtained from the Currículo Lattes on October 8th 2021)


Possui graduação em Engenharia Química pela Faculdade Oswaldo Cruz (1983), mestrado em Tecnologia Nuclear ? Aplicações pelo IPEN/USP (1999), doutorado em Tecnologia Nuclear ? Aplicações pelo IPEN/USP (2006) e Pós-Doutorado no Center for Advanced Materials (T-CAM) da Tuskegee University, AL, USA. As principais linhas de pesquisa são: Síntese de nanopartículas metálicas; Obtenção e caracterização de nanopartículas a partir de resíduos da atividade mineral e da agroindústria; Funcionalização de micro e nanocargas; Síntese e redução de óxido de grafeno; Desenvolvimento e modificaçao de materiais compósitos baseados em polímeros convencionais e biodegradáveis com fibras vegetais, micro e nanocargas de origem renovável; Desenvolvimento de embalagens plásticas biodegradáveis, ativas e inteligentes para alimentos, cosméticos, produtos médicos e farmacêuticos;Desenvolvimento de materiais poliméricos condutores; Desenvolvimento de biomateriais para aplicação na regeneração de tecidos ósseos e dentários. (Texto extraído do Currículo Lattes em 08 out. 2021)

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 8 de 8
  • Artigo IPEN-doc 29881
    Effectiveness of modified lignin on poly(butylene adipateco-terephthalate)/poly(lactic acid) mulch film performance
    2023 - BARROS, JANETTY J.P.; OLIVEIRA, RENE R.; LUNA, CARLOS B.B.; WELLEN, RENATE M.R.; MOURA, ESPERIDIANA A.B.
    In this work, the biodegradable poly(butylene adipate-co-terephthalate) (PBAT)/ poly(lactic acid) (PLA) blend (ECOVIO®) and lignin, a renewable and biodegradable natural polymer with high UV absorption and modified by gamma radiation were used to produce agriculture mulch films. Lignin was gammairradiated at 30 and 60 kGy. The irradiated and non-irradiated lignin content of 2 wt% was incorporated into PBAT/PLA blend matrix using a twin-screw extruder and extrusion blown film to prepare flexible films. PBAT/PLA/LIGNIN films were characterized by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), tensile tests, contact angle, and UV–Vis analysis. FTIR spectra showed partial miscibility between PBAT/PLA and lignin, being intensified in irradiated lignin compounds. The DSC and XRD results confirmed that the degree of crystallinity of the blends was not significantly influenced by lignin addition. FE-SEM images showed better dispersion and miscibility in PBAT/PLA/Irradiated lignin. Miscibility improvement provided by irradiated lignin promoted better mechanical properties, mainly with lignin irradiated at 60 kGy. PBAT/PLA/LIGNIN films containing 2 wt% showed excellent UV-barrier property and greater hydrophobicity. Summing up, incorporation of low contents of irradiated lignin could be an interesting alternative to produce biodegradable UV-blocking agriculture mulch films.
  • Artigo IPEN-doc 29697
    Influence of reinforcing efficiency of clay on the mechanical properties of poly(butylene terephthalate) nanocomposite
    2023 - COLOMBO, MARIA A.S.; DIAZ, FRANCISCO R.V.; KODALI, DEEPA; RANGARI, VIJAYA; GUVEN, OLGUN; MOURA, ESPERIDIANA A.B.
    In contrast to traditional fillers, clay, in particular, natural smectite clay, represents an environmentally significant alternative to improve the properties of polymers. Compared to conventional nanofillers, smectite clay can effectively enhance the physical and mechanical properties of polymer nanocomposites with a relatively small amount of addition (<5 wt%). The present study focuses on investigating the reinforcing efficiency of different amounts (up to 5 wt%) of a natural Brazilian smectite clay modified (MBClay) on the mechanical properties of poly(butylene terephthalate) (PBT) nanocomposites and also evaluates the correlation between MBClay addition and the mechanical and thermal behaviors of the PBT/MBClay nanocomposites. Natural Brazilian clay modified by the addition of quaternary salt and sodium carbonate (MBClay) was infused into the PBT polymer by melt extrusion using a twin-screw extruder. It was found that the best properties for PBT were obtained at 3.7 wt% of modified BClay. Tensile strength at break exhibited increased by about 60%, flexural strength increased by 24%, and flexural modulus increased by 17%. In addition, an increase in the crystallinity percentage of PBT/BClay nanocomposite was confirmed by DSC and XRD analysis, and a gain of about 45% in HDT was successfully achieved due to the incorporation of 3.7 wt% of MBClay
  • Artigo IPEN-doc 29101
    Synergistic effect of e-beam irradiation and graphene oxide incorporation on thermal, mechanical, and barrier properties of poly (ethylene-co-vinyl alcohol) film
    2022 - SANTANA, JULYANA G.; AKBULUT, MESHUDE; TEMPERINI, MARCIA L.A.; RANGARI, VIJAY K.; GUVEN, OLGUN; MOURA, ESPERIDIANA
    Graphene and its derivatives, such as graphene oxide (GO), have attracted enormous interest from academia and industry because of its unique electrical, mechanical, and thermal properties, which can lead to enhanced material performance. In the present study, low contents of GO were incorporated into the poly (vinyl alcohol-co-ethylene) (EVOH). First, the GO was prepared by chemical oxidation of graphite employing a modified Hummer's method. The GO content of 0.1–0.3 wt % was incorporated in the EVOH matrix using a twin-screw extruder and extrusion blown film process to prepare flexible films. EVOH/GO film samples were irradiated at 100 kGy, using a 1.5 MeV electron-beam accelerator, at room temperature, in the presence of air. GO was characterized by XRD, ATR-FTIR, FE-SEM, and TEM analysis. XRD patterns of GO show a sharp reflection peak at 2θ = 10° (d001) corresponding to a d-spacing at 8.84 Å, characteristic of GO. The non-irradiated and irradiated samples were characterized by XRD, FEG-SEM, TG, DSC, oxygen transmission rate (OTR), UV/VIS analysis, and tensile tests. EVOH/GO nanocomposite films had an improved oxygen barrier, while also retaining fairly good transparency. As an effect of e-beam irradiation, the thermal, mechanical, and barrier behaviors of the nanocomposite films were even better than non-irradiated film samples, and obviously better than neat EVOH. Thus, the incorporation of low contents of GO followed by e-beam radiation treatment might be an interesting alternative to produce packaging materials based on EVOH with outstanding performance even under very humid conditions.
  • Artigo IPEN-doc 29057
    Enhanced miscibility of PBAT/PLA/lignin upon γ-irradiation and effects on the non-isothermal crystallization
    2022 - BARROS, JANETTY J.P.; SOARES, CARLOS P.; MOURA, ESPERIDIANA A.B. de; WELLEN, RENATE M.R.
    Lignin is natural and renewable polymer, the second most abundant on Earth. Properly used it can reduce synthetic and oil based materials in addition to contributing to the biodegradable systems. In this work, the kraft lignin was subjected to gamma radiation at absorbed doses of 30, 60, and 90 KGy in order to increase the interaction with “Poly(butylene adipate-co-terephthalate) (PBAT)/Poly(lactic acid) (PLA)” blend (Ecovio®). PBAT/PLA/lignin blends with 10% of the weight of lignin were produced by extrusion using twin-screw extruder and characterized by Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), and Field emission scanning electron microscopy (FE-SEM). FTIR spectra showed partial miscibility between PBAT/PLA and lignin, most due to the hydrogen bond between PBAT/PLA carbonyl and lignin hydroxyl, being intensified in irradiated lignin compounds. As evidenced on DSC scans, in PBAT/PLA/irradiated lignin the crystallization peak was shifted to lower temperatures and the crystallization rate decreased. Crystallization kinetics was modeled using Pseudo Avrami, and isoconversional models of Friedman and Vyazovkin. Pseudo-Avrami displayed linearity deviation at beginning and crystallization ending due to the nucleation and secondary crystallization, while from Friedman and Vyazovkin the activation energy (Ea) was higher for PBAT/PLA/irradiated lignin 30 KGy, characterizing crystallization with higher energy consumption. FE-SEM images showed better dispersion and miscibility in PBAT/PLA/irradiated lignin. The results indicate that the irradiation of Kraft lignin promotes miscibility and compatibility of PBAT/PLA/lignin.
  • Artigo IPEN-doc 28883
    Recycling expanded polystyrene with a biodegradable solvent to manufacture 3D printed prototypes and finishing materials for construction
    2022 - BARTOLOMEI, SUELLEN S.; SILVA, FELIPE L.F. da; MOURA, ESPERIDIANA A.B. de; WIEBECK, HELIO
    The amount of plastic waste generated is causing damage to the environment, such as sea and soil pollution, and one of the alternatives for disposing of polymers is recycling. This work proposes recycling expanded polystyrene using a biodegradable solvent, its plastification with glycerol, and the preparation of the composite with post-consumer recycled gypsum for applications to manufacturing by 3D printing and for finishing materials for construction. Specimen for tensile testing and shore D hardness were prepared by injection process and by 3D printing. In addition, Thermogravimetric (TG), Fourier-transform infrared spectrometry (FTIR), Differential scanning calorimeter, Scanning electron microscope (FESEM) analyses, and flame propagation tests were also carried out. TG and FTIR analyses show that the recycling process did not degrade the material, and the addition of glycerol and gypsum improved the thermal stability of the composite. The mechanical properties of the injected and 3D printed samples with gypsum were similar, due to the dimensional stability of the manufactured filament, which improved the speed and quality of the specimen printing. The increase in ductility and the reduction in the glass transition temperature showed that the recycled expanded polystyrene (RPS) were effectively plasticized with the addition of 2 wt% glycerol, preserving their flame self-extinguishment when subjected to the flame propagation test. Due to these properties, the plasticized RPS can be used to manufacture articles for finishing in civil construction, and the RPS composite can be used to manufacture 3D printed prototypes.
  • Artigo IPEN-doc 28665
    Development of sustainable food packaging material based on biodegradable polymer reinforced with cellulose nanocrystals
    2022 - ANDRADE, MARCIO S.; ISHIKAWA, OTAVIO H.; COSTA, ROBSON S.; SEIXAS, MARCUS V.S.; RODRIGUES, RITA C.L.B.; MOURA, ESPERIDIANA A.B.
    The increased environmental impact and sustainability issues related to conventional food packaging have gained attention and led to a global concern. The massive consumption of conventional food packaging has increased disposal of non-eco-friendly packaging waste, severely damaging the environment. The replacement by sustainable packaging is an important alternative to reduce the enormous volume of plastic waste. In this work, bionanocomposite films composed of PBAT/PLA blend and cellulose nanocrystals (CNCs) extracted from agro-waste were investigated. Characterization of CNCs confirmed that nanocrystals were obtained. Bionanocomposite films presented better hydrophobic character and thermal stability than the blend film. In addition, the tensile strength, elongation at break, and Young's modulus was around 52%, 29%, and 118%, respectively, higher than blend films. These mechanical values were comparable to values of commercial plastic materials that are extensively used in food packaging. Thus, the prepared bionanocomposite films might be an interesting alternative to produce sustainable food packaging materials.
  • Artigo IPEN-doc 27595
    Noncovalently functionalized halloysite nanotubes for use in reinforced polymer composites
    2020 - FRANCISCO, DANAE L.; PAIVA, LUCILENE B.; ALDEIA, WAGNER; LUGAO, ADEMAR B.; MOURA, ESPERIDIANA A.B.
    The inorganic halloysite nanotube (HNT) is a promising type of naturally occurring fillers with many important uses in different fields. An HNT has a relatively low content of hydroxyl groups on its surface, which makes it relatively hydrophobic, although this is not always sufficient to guarantee good interfacial adhesion in composite systems. Further surface treatment is required to improve the compatibility of HNTs with polymer matrixes, maximizing interfacial interactions. The aim of the present work was to study a noncovalent functionalization of halloysite with 2,2′-(1,2-ethenediyldi-4,1-phenylene) bisbenzoxazole (EPB), based on electron transfer, for further use of EPB as a coupling agent in polymer/HNT compatibility. A set of characterization techniques were performed to evaluate the chemical and physical properties and evidence the functionalization. The results revealed the surface modification of halloysite upon functionalization. Emphasis was for powder wettability by tensiometry based on Washburn because no studies about halloysite powders using this technique could be found in the literature. The results demonstrate a reduction in the total surface energy of the system, usually accompanied by a reduction in the polar component upon HNT modification.
  • Resumo IPEN-doc 24848
    Preparation and characterization of nanocellulose from sugarcane bagasse
    2017 - SEIXAS, MARCUS V. de S.; RANGARI, VIJAYA K.; MOURA, ESPERIDIANA A.B.; WIEBECK, HELIO
    Nanocellulose is steadily gaining attention since this material is a renewable alternative to reinforce polymers. Research and development of materials obtained from renewable natural sources have been the focus of attention in various engineering applications. The residues from different kinds of lignocellulosic materials has great potential for production of biocomposites, which are applied in optoelectronic devices, packaging, and building. The main object of this work was study of nanocellulose preparation from sugarcane bagasse and its characterization. The sugarcane bagasse was submitted to chemical treatment for separating of the cellulose from the lignocellulosic material, bleaching with hydrogen peroxide followed by sonication treatment for obtaining nanocellulose. Sonication treatment solution was prepared with a cellulosic material in water/DMF(dimethylformamide)/ethanol. Sonication treatment was done in a DES500 ultrasonic cell tip/horn sonicator with a 20 kHz ultrasonic frequency. The nanocellulose samples were characterized by FTIR, XRD, FE-SEM and TEM analysis. According to the results, the methodology used in this work presented a great potential to the obtaining of nanocellulose for applications in the development of new nanocomposite materials.