ESPERIDIANA AUGUSTA BARRETOS DE MOURA

Resumo

Graduated in Chemical Engineering at Faculdade Oswaldo Cruz (1983), Master in Nuclear Technology - Applications at IPEN / USP (1999), Ph.D. in Nuclear Technology - Applications at IPEN / USP (2006) and Post-Doctorate at Center for Advanced Materials ( T-CAM) from Tuskegee University, AL, USA. The main lines of research are: Synthesis of metallic nanoparticles; Obtaining and characterization of nanoparticles from mineral activity and agroindustry residues; Micro and nanofiller functionalization; Synthesis and reduction of graphene oxide; Development and modification of composite materials based on conventional and biodegradable polymers with vegetable fibers, micro and nanofillers of renewable origin; Development of biodegradable, active and intelligent plastic packaging for food, cosmetics, medical and pharmaceutical products; Development of conductive polymeric materials; Development of biomaterials for application in the regeneration of bone and dental tissue. (Text obtained from the Currículo Lattes on October 8th 2021)


Possui graduação em Engenharia Química pela Faculdade Oswaldo Cruz (1983), mestrado em Tecnologia Nuclear ? Aplicações pelo IPEN/USP (1999), doutorado em Tecnologia Nuclear ? Aplicações pelo IPEN/USP (2006) e Pós-Doutorado no Center for Advanced Materials (T-CAM) da Tuskegee University, AL, USA. As principais linhas de pesquisa são: Síntese de nanopartículas metálicas; Obtenção e caracterização de nanopartículas a partir de resíduos da atividade mineral e da agroindústria; Funcionalização de micro e nanocargas; Síntese e redução de óxido de grafeno; Desenvolvimento e modificaçao de materiais compósitos baseados em polímeros convencionais e biodegradáveis com fibras vegetais, micro e nanocargas de origem renovável; Desenvolvimento de embalagens plásticas biodegradáveis, ativas e inteligentes para alimentos, cosméticos, produtos médicos e farmacêuticos;Desenvolvimento de materiais poliméricos condutores; Desenvolvimento de biomateriais para aplicação na regeneração de tecidos ósseos e dentários. (Texto extraído do Currículo Lattes em 08 out. 2021)

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 10 de 30
  • Artigo IPEN-doc 29881
    Effectiveness of modified lignin on poly(butylene adipateco-terephthalate)/poly(lactic acid) mulch film performance
    2023 - BARROS, JANETTY J.P.; OLIVEIRA, RENE R.; LUNA, CARLOS B.B.; WELLEN, RENATE M.R.; MOURA, ESPERIDIANA A.B.
    In this work, the biodegradable poly(butylene adipate-co-terephthalate) (PBAT)/ poly(lactic acid) (PLA) blend (ECOVIO®) and lignin, a renewable and biodegradable natural polymer with high UV absorption and modified by gamma radiation were used to produce agriculture mulch films. Lignin was gammairradiated at 30 and 60 kGy. The irradiated and non-irradiated lignin content of 2 wt% was incorporated into PBAT/PLA blend matrix using a twin-screw extruder and extrusion blown film to prepare flexible films. PBAT/PLA/LIGNIN films were characterized by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), tensile tests, contact angle, and UV–Vis analysis. FTIR spectra showed partial miscibility between PBAT/PLA and lignin, being intensified in irradiated lignin compounds. The DSC and XRD results confirmed that the degree of crystallinity of the blends was not significantly influenced by lignin addition. FE-SEM images showed better dispersion and miscibility in PBAT/PLA/Irradiated lignin. Miscibility improvement provided by irradiated lignin promoted better mechanical properties, mainly with lignin irradiated at 60 kGy. PBAT/PLA/LIGNIN films containing 2 wt% showed excellent UV-barrier property and greater hydrophobicity. Summing up, incorporation of low contents of irradiated lignin could be an interesting alternative to produce biodegradable UV-blocking agriculture mulch films.
  • Artigo IPEN-doc 29697
    Influence of reinforcing efficiency of clay on the mechanical properties of poly(butylene terephthalate) nanocomposite
    2023 - COLOMBO, MARIA A.S.; DIAZ, FRANCISCO R.V.; KODALI, DEEPA; RANGARI, VIJAYA; GUVEN, OLGUN; MOURA, ESPERIDIANA A.B.
    In contrast to traditional fillers, clay, in particular, natural smectite clay, represents an environmentally significant alternative to improve the properties of polymers. Compared to conventional nanofillers, smectite clay can effectively enhance the physical and mechanical properties of polymer nanocomposites with a relatively small amount of addition (<5 wt%). The present study focuses on investigating the reinforcing efficiency of different amounts (up to 5 wt%) of a natural Brazilian smectite clay modified (MBClay) on the mechanical properties of poly(butylene terephthalate) (PBT) nanocomposites and also evaluates the correlation between MBClay addition and the mechanical and thermal behaviors of the PBT/MBClay nanocomposites. Natural Brazilian clay modified by the addition of quaternary salt and sodium carbonate (MBClay) was infused into the PBT polymer by melt extrusion using a twin-screw extruder. It was found that the best properties for PBT were obtained at 3.7 wt% of modified BClay. Tensile strength at break exhibited increased by about 60%, flexural strength increased by 24%, and flexural modulus increased by 17%. In addition, an increase in the crystallinity percentage of PBT/BClay nanocomposite was confirmed by DSC and XRD analysis, and a gain of about 45% in HDT was successfully achieved due to the incorporation of 3.7 wt% of MBClay
  • Artigo IPEN-doc 29057
    Enhanced miscibility of PBAT/PLA/lignin upon γ-irradiation and effects on the non-isothermal crystallization
    2022 - BARROS, JANETTY J.P.; SOARES, CARLOS P.; MOURA, ESPERIDIANA A.B. de; WELLEN, RENATE M.R.
    Lignin is natural and renewable polymer, the second most abundant on Earth. Properly used it can reduce synthetic and oil based materials in addition to contributing to the biodegradable systems. In this work, the kraft lignin was subjected to gamma radiation at absorbed doses of 30, 60, and 90 KGy in order to increase the interaction with “Poly(butylene adipate-co-terephthalate) (PBAT)/Poly(lactic acid) (PLA)” blend (Ecovio®). PBAT/PLA/lignin blends with 10% of the weight of lignin were produced by extrusion using twin-screw extruder and characterized by Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), and Field emission scanning electron microscopy (FE-SEM). FTIR spectra showed partial miscibility between PBAT/PLA and lignin, most due to the hydrogen bond between PBAT/PLA carbonyl and lignin hydroxyl, being intensified in irradiated lignin compounds. As evidenced on DSC scans, in PBAT/PLA/irradiated lignin the crystallization peak was shifted to lower temperatures and the crystallization rate decreased. Crystallization kinetics was modeled using Pseudo Avrami, and isoconversional models of Friedman and Vyazovkin. Pseudo-Avrami displayed linearity deviation at beginning and crystallization ending due to the nucleation and secondary crystallization, while from Friedman and Vyazovkin the activation energy (Ea) was higher for PBAT/PLA/irradiated lignin 30 KGy, characterizing crystallization with higher energy consumption. FE-SEM images showed better dispersion and miscibility in PBAT/PLA/irradiated lignin. The results indicate that the irradiation of Kraft lignin promotes miscibility and compatibility of PBAT/PLA/lignin.
  • Capítulo IPEN-doc 27631
    Production and characterization of PBAT reinforced with clay and graphene oxide nanosheets
    2020 - COSTA, ROBSON S.; ARAUJO, DANIELLE G.; ANDRADE, MARCIO S. de; OLIVEIRA, RENE R.; RANGARI, VIJAYA; MOURA, ESPERIDIANA A.B.; DIAS, FRANCISCO V.
    The poly (butylene adipate-co-terephthalate) (PBAT), a biodegradable polymer, is among the most promising materials to be considered as environmentally friendly high performance biodegradable plastics. However, the mechanical properties of PBAT are not the best for several applications. According to the literature, the properties of the biodegradable polymer can be improved by addition of a small amount of nanofillers, such as clay, silica, and graphene. The objective of this study is to compare the effect of the addition of Cloisite clay and graphene oxide (GO) on the properties of flexible films based on PBAT matrix. The composite films based on PBAT with addition of Cloisite (2.0 wt%) and PBAT composite films with addition of Cloisite and GO (0.1–0.2 wt%) were prepared by extrusion, using a twin-screw extruder and a flat die single extruder. The effects of the addition of Cloisite clay and graphene oxide on mechanical and thermal properties of films were evaluated by mechanical and water absorption tests, FE-SEM, XRD, and Raman analysis.
  • Capítulo IPEN-doc 27629
    Mechanical and morphological properties of hybrid composites based on recycled LDPE/EVA blend reinforced with clay and babassu fiber residues
    2020 - TAMURA, CAROLINE S.; ARANTES, MARIANA; CARMO, KARINA H.S.; SANTOS, BIANCA S.; OLIVEIRA, RENE R.; MOURA, ESPERIDIANA A.B.
    Over the years the consumption of plastic products made of conventional polymers has produced a large amount of waste which has led to disposal problems worldwide. Among the alternatives to minimize these problems are reuse and recycling practices. Then, the recycling of plastic and the use of recycled materials to produce new materials reinforced with nanoparticles from natural resources can be an alternative to reduce inappropriate waste disposal. The objective of this study is to investigate the effects of the addition of clay and non-treated babassu fiber residues on the mechanical and morphological properties of composite based on recycled LDPE/EVA blend. Composite materials containing 1–3 wt% of babassu residues and 1 wt% of clay were prepared using a twin-screw extruder machine and flat die single extrusion process, in order to prepare hybrid composites sheets. The sheets prepared by recycled LDPE/EVA blend and its composites were characterized by tensile tests, XRD, and FE-SEM analysis and the correlation between properties was discussed.
  • Capítulo IPEN-doc 27628
    Investigation on mechanical and thermal behaviours of PBAT/PLA blend reinforced with reduced graphene oxide nanosheets
    2020 - BARTOLOMEI, MARCIO R.X.; CARMO, KARINA H.S.; SANTOS, BIANCA S.; BARTOLOMEI, SUELLEN S.; OLIVEIRA, RENE R.; MOURA, ESPERIDIANA A.B.
    The aim of this study was to process and investigate the changes in the mechanical and morphological properties of the biodegradable nanocomposites based on polybutylene adipate-co-terephthalate (PBAT)/poly(lactic acid) (PLA) blend (PBAT/PLA blend) due to the incorporation of reduced graphene oxide (RGO) nanosheets. The biodegradable polymeric nanocomposites were prepared by melting extrusion process using a twin-screw extruder machine. The influence of the RGO nanosheets incorporation on mechanical and thermal properties of PBAT/PLA blend was investigated by tensile Thermogravimetric (TG), X-Ray diffraction (XRD), differential scanning calorimetry (DSC), and tensile test analysis. Results showed that incorporation of the small amount ofRGO(0.1wt.%) ofRGOnanosheets in the blend matrix of PBAT/PLA resulted in an important gain of mechanical properties of the blend. This result indicates that a very small amount of RGO nanosheets addition in the PBAT/PLA can lead to obtaining materials with superior properties suitable for several industrial applications.
  • Capítulo IPEN-doc 27621
    A bibliometric analysis of the strategy and performance measurement of the polymer matrix nanomaterials development scenario globally, and the participation of Brazil
    2020 - COSTA, ROBSON S.; MOURA, ESPERIDIANA A.B.
    Extensive studies have been conducted worldwide on the strategy for the development of nanomaterials. One of the known strategies for this has aroused interest in the market is the incorporation of the nanoparticles, extracted from the residues in thematrices of the polymers for the production of environmentally correct nanocomposites. This work presents a survey of the scientific knowledge of nanomaterials of the polymer matrix and a panoramic view of the evolution of these nanomaterials are subject, in order to meet the criteria of sustainable development due to the environmental concerns. This study also intends to use bibliometric tools to database acquisition and analysis of bibliographic reviews for an evaluation of the scenarios in the world on the development of polymeric nanomaterials based on three different classes of polymeric nanocomposites: polymer/clay; polymer/graphene, and polymer/nanocellulose nanocomposites.
  • Capítulo IPEN-doc 25876
    The potential of micro- and nano-sized fillers extracted from agroindustry residues as reinforcements of thermoplastic-based biocomposites
    2019 - MOURA, ESPERIDIANA A.B.
    Currently, the relevance of reuse of agroindustrial waste to obtain fillers in micro- and nano-sizes for the development of biocomposite materials has grown significantly. Production processes based on sustainable and low carbon development have increased interest in more environmentally friendly polymer composites, which have made the origin of reinforcement materials a determining factor for their application in this segment. This work presents a review of the developments of our team in the field of thermoplastic biocomposites reinforced with micro- and nano-sized fillers extracted from agroindustry residues. The different residues from Brazilian agroindustry available for the extraction of micro- and nano-sized fillers for the production of polymer biocomposites, the methods of the extraction and treatments of these natural fillers are presented; and its application as reinforcements in thermoplastic-based biocomposite are discussed in this review.
  • Capítulo IPEN-doc 25625
    Development of biocomposite materials from biodegradable polymer and bio-hydroxyapatite derived from eggshells for biomedical applications
    2019 - REIS, PEDRO R.S.; SANTANA, JULYANA G.; OLIVEIRA, RENE R.; RANGARI, VIJAYA K.; LOURENÇO, FELIPE R.; MOURA, ESPERIDIANA A.B.
    Nowadays, significant advances have been made in the development of biodegradable polymeric materials for biomedical applications. This study aims to prepare and characterize composite materials based on PLA/PBAT, a biodegradable polymer blend, reinforced with bio-hydroxyapatite (bio-HAp). First, bio-HAp was obtained from eggshell residues by the wet precipitation method. PLA/PBAT blend with 1.5 wt% of bio-HAp was prepared by melt extrusion and injection molding process. Part of composite samples was irradiated with gamma radiation dose of 25 kGy, at room temperature and presence of air. The effects of the bio-HAp addition into the biodegradable blend were investigated by mechanical tests, XRD, DSC, FESEM, and cytotoxicity “in vitro” analysis and the correlation between the properties was discussed. In addition, the microbiological tests were carried out at irradiated and non-irradiated composite samples in order to evaluate the efficiency of the radiation dose of 25 kGy at composite materials sterilization.
  • Capítulo IPEN-doc 25020
    Study of flexible films prepared from PLA/PBAT blend and PLA E-beam irradiated as compatibilizing agent
    2017 - CARDOSO, ELIZABETH C.L.; OLIVEIRA, RENE R.; MACHADO, GLAUSON A.F.; MOURA, ESPERIDIANA A.B.
    Plastics global annual production exceeds 250 million tons and more than 40% of the total plastic production is used as packaging materials. In recent years polymeric materials derived from biomass have received great attention due to scarce petroleum resources and environmental concerns. PLA is one of the most extensively studied bio-based and bio-compostable aliphatic polyesters; nevertheless, high brittleness and low toughness limits its application. Blending PLA with PBAT (Poly(butylene adipate-co-terephthalate)), an aliphatic-aromatic copolyester, was the solution found due to its high toughness and biodegradability. Differences between PLA and PBAT solubility parameter values lead to the formation of immiscible blends as well as reduction in their mechanical performance besides a poor morphology; so, 5% of pre-irradiated PLA and a previous compatibilized PLA/PBAT (EcovioTM) were added to PLA/PBAT blends in order to improve miscibility phases. Investigations were accomplished on phase morphology (SEM), mechanical properties, thermal behavior and X-ray diffractions (XRD).