CARLA DARUICH DE SOUZA

Resumo

Bsc in Medical Physics from UNESP in Botucatu Compleated at IPEN, University of São Paulo: 1) Master's Degree: Comparison between methods for fixing iodine-125 on silver substrate for fabricating sources used in Brachytherapy / 2) PhD: Parameters for production of iodine-125 sources used in brachytherapy and "sandwich" doctorate: Washington State University - training in radiochemistry and organic chemistry / 3) Post doctorate: Production of nanosources for the treatment of cancer / 4) Project: Analysis of methods to obtain / produce nuclear material for use in a radioisotope thermoelectric generator (RTG)/ Advisor of the Professional Master's Degree in Radiation Technology in Health / Professor of the Professional Master Program in the disciplines Dosimetry for Radiotherapy and Radiotherapy Fundamentals / Professor of the Academic Master Program in the discipline TNA5805 - Brachytherapy: Fundamentals, Production, Application, Dosimetry and Quality Research Associate of KAERI - Korean Atomic Energy and Research Institute (Text obtained from the Currículo Lattes on October 6th 2021)


Formada em Física Médica pela UNESP em Botucatu Realizado no IPEN-USP/ SP: 1) Mestrado: Comparação entre métodos de fixação do iodo-125 em substrato de prata para confecção de fontes utilizadas em Braquiterapia / 2) Doutorado: Parâmetros para produção de confecção de fontes de iodo-125 utilizadas em Braquiterapia e Doutorado sanduíche: Washington State University - treinamento em radioquímica / 3) Pós doutorado: Produção de nanofontes para tratamento de câncer / 4) Projeto: Análise de formas de obtenção/produção do material nuclear para utilização em um gerador termoelétrico radioisotópico (RTG)/ Orientadora do Mestrado Profissional de Tecnologia das Radiações na Saúde/ Professora do Mestrado Profissional nas disciplinas Dosimetria para Radioterapia e Fundamentos de Radioterapia/ Professora do Mestrado Acadêmico na disciplina TNA5805 - Braquiterapia: Fundamentos, Produção, Aplicação, Dosimetria e Qualidade Research Associate do KAERI - Korean Atomic Energy and Research Institute (Texto extraído do Currículo Lattes em 06 out. 2021)

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 7 de 7
  • Artigo IPEN-doc 28351
    New model for an epoxy-based brachytherapy source to be used in spinal cancer treatment
    2021 - SILVA, JOSE T.; SOUZA, CARLA D. de; ANGELOCCI, LUCAS V.; ROSERO, WILMMER A.A.; NOGUEIRA, BEATRIZ R.; CORREIA, RUANYTO W.; ZEITUNI, CARLOS A.; ROSTELATO, MARIA E.C.M.
    The present work described the cold fabrication of a P-32 radioactive source to be used in CNS cancer using epoxy resin. The epoxy plaque fabricated with Teflon mold presented better agreement. MCNP simulation evaluated the radiation dose. Special attention was given to factors that can impact dose distribution. Average dose was 16.44 ± 2.89% cGy/s. Differences of less than 0.01 cm in thickness within the plaque lead to differences of up to 12% in the dose rate.
  • Artigo IPEN-doc 27771
    Monte Carlo simulation to assess free space and end-weld thickness variation effects on dose rate for a new Ir-192 brachytherapy source
    2021 - ANGELOCCI, LUCAS V.; SOUZA, CARLA D. de; PANTELIS, EVAGGELOS; NOGUEIRA, BEATRIZ R.; ZEITUNI, CARLOS A.; ROSTELATO, MARIA E.C.M.
    A new Iridium-192 seed for brachytherapy is under development. Specific dose rate contribution by two different factors were evaluated: the effect from movement of the core in the free space within the seed and the effect of the end-weld thickness variation. Both were investigated through use of the Monte Carlo radiation transport code MCNP6 and an in-house routine programmed with MATLAB. Differences greater than 15% compared to results from the nominal seed were found near the source, indicating a significant dose variation.
  • Artigo IPEN-doc 27362
    New core configuration for the fabrication of 125I radioactive sources for cancer treatment
    2020 - SOUZA, CARLA D. de; ZEITUNI, CARLOS A.; FEHER, ANSELMO; MOURA, JOÃO A.; COSTA, OSVALDO L. da; ANGELOCCI, LUCAS V.; ROSTELATO, MARIA E.C.M.
    In order to provide prostate brachytherapy treatment for more Brazilian men, IPEN is building a laboratory for the manufacture of radioactive sources. The new methodology for the production of iodine-125 seeds with yield 71.7% ± 5.3%. Points of importance were evaluated/discussed: photo-sensibility, reaction vial type, the substitution for iodine-131, pH, and solution volume. The surface was analyzed by FTIR and EDS. At the end, a Monte Carlo-MCNP6 simulation was performed to evaluate the TG-43 parameters.
  • Resumo IPEN-doc 26914
    New methodology for binding Iodine-125 onto silver for brachytherapy sources manufacture
    2017 - SOUZA, C.D. de; ROSTELATO, M.C.M.; CARDOSO, R.M.; ARAKI, K.; MOURA, J.
    Purpose: Cancer is a major health care problem in Brazil and the world. The Brazil’s National Institute for Cancer estimates around 60,000 new prostate cancer cases for 2017. We are assembling a laboratory for production of iodine-125 sources used in prostate brachytherapy in Brazil, since the imported treatment is extremely expensive, thus only available in the private healthcare sector. There are several challenges when developing a laboratory to produce radioactive sources. From choosing a prototype to radiation safety, the task is enormous. The whole production line is full of new process and innovations. Among those, a new chemical reaction that deposit iodine-125 onto silver (core) was developed. This paper presents a new reaction for binding iodine-125 into a silver core. The fixation percentage was calculated by measuring the activity in an ionization chamber. This methodology will be implemented at the iodine-125 sources manufacture laboratory. Methods: Silver cores are washed with an etching solution (100% sulfuric acid) for 5 minutes with sonication. The cores were then placed in sodium sulfate for at least 3 days. They went from a silver matte to a black color. The reaction was allowed to proceed overnight. Each core was individually measured. Results: The yield was 69.2% 7.1%. Considering the silver attenuation is around 20% the results were consider satisfactory. Conclusion: By maximize the reaction yield, we will be able to generate a less costly product that will be available through our public healthcare.
  • Resumo IPEN-doc 26912
    Methodology for in vivo dosimetry using TLD-100 for radiotherapic treatment
    2017 - RODRIGUES, B.T.; SOUZA, P.D. de; SOUZA, C.D. de; ROSTELATO, M.C.M.; ZEITUNI, C.; NOGUEIRA, B.R.; MARQUES, J. de O.; SOUZA, A.S. de
    Cancer is a public health problem that affects approximately 27 million people worldwide. The most common type in Brazil among men is prostate cancer with 61 thousand cases. There are two forms of radiotherapy treatments that can be used: teletherapy and brachytherapy. Before starting the teletherapy treatment, a planning is done that makes the acquisition of the anatomical information of the patient to then classify the areas of interest. Dosimetry is performed as a quality control to ensure that the calculated dose is equal to that received by the patient. In vivo dosimetry acts as an independent measurement and this work aims at comparing the dosimetry performed using thermoluminescent dosimeters (LiF: Mg, Ti - TLD - 100) with dose values calculated in the planning system (TPS). Methods: All dosimeters were prepared to be used in an anthropomorphic phantom. A selection of dosimeters, 50 micro TLD’s, selected after heat treatment, were then irradiated and a reading was made. A case planned by TPS was selected and compared the dosimetry performed in an anthropomorphic phantom for the same case. Results: All values obtained were within the deviation ( 5%) allowed by the protocol. The results of this work will help to implement a new quality program in the Radiotherapy Service at Hospital das Cl ınicas de S~ao Paulo. Conclusion: The accurate dosimeter selection provided a feasible and reliable evaluation that enabled the comparison.
  • Resumo IPEN-doc 26911
    Measurement of Iodine-125 radioactive solid waste derived from sources production laboratory for brachytherapy
    2017 - SOUZA, D.B. de; ROSTELATO, M.C.M.; VICENTE, R.; ZEITUNI, C.; SOUZA, C.D. de; RODRIGUES, B.T.; MARQUES, J. de O.; CARVALHO, V.; BARBOSA, N.
    Purpose: This study aims to present a solid waste management plan for the laboratory of radioactive sources production (LPFR), iodine-125 brachytherapy seeds, located at the Energy and Nuclear Research Institute (IPEN). After the implementation, it is expected to meet a demand of 8000 seeds per month. Methods: Waste from the production of Iodine-125 sources is classified as “Very Low Level Waste Disposal” (T1/2 ≤ 100 days) in the IAEA regulations. Despite that, they have levels of activity above the limits established in standard (CNEN 8.01) needing adequate management in order to guarantee the safety of the installation, operators and environment. The solid waste is generated in Glove box 1, were the fixation reaction (iodine-125 – core) takes place. The wastes from this production are absorbent papers and filters used in surface and air decontamination processes; glass vials, syringes and needles, used in the fixation reaction. Measures of mass, volume and values of activities generated over 5 years of production were performed for each glove box by estimating different scenarios throughout production (supplier switching, variation in activity by radioactive source, etc.). The concentration of activity was also determined in order to meet the criteria established in the standard for safe release of the waste. Results: The final volumes and activities calculated indicated that the laboratory has enough space for temporary storage until the release to the environment (thus not requiring treatment, transport, and another place for management). The data collected proved that a secure management system for radioactive waste within the facility is possible. Conclusion: The management proposed by this work was able to safely contemplate all stages of waste management. This data is indispensable for the construction and licensing of the laboratory.
  • Resumo IPEN-doc 25646
    New gold-198 nanoparticle synthesis to be used in cancer treatment
    2018 - SOUZA, C.D. de; ROSTELATO, M.C.M.; ZEITUNI, C.; GONZALEZ, A. del C.C.; NOGUEIRA, B.R.