CARLA DARUICH DE SOUZA

Resumo

Bsc in Medical Physics from UNESP in Botucatu Compleated at IPEN, University of São Paulo: 1) Master's Degree: Comparison between methods for fixing iodine-125 on silver substrate for fabricating sources used in Brachytherapy / 2) PhD: Parameters for production of iodine-125 sources used in brachytherapy and "sandwich" doctorate: Washington State University - training in radiochemistry and organic chemistry / 3) Post doctorate: Production of nanosources for the treatment of cancer / 4) Project: Analysis of methods to obtain / produce nuclear material for use in a radioisotope thermoelectric generator (RTG)/ Advisor of the Professional Master's Degree in Radiation Technology in Health / Professor of the Professional Master Program in the disciplines Dosimetry for Radiotherapy and Radiotherapy Fundamentals / Professor of the Academic Master Program in the discipline TNA5805 - Brachytherapy: Fundamentals, Production, Application, Dosimetry and Quality Research Associate of KAERI - Korean Atomic Energy and Research Institute (Text obtained from the Currículo Lattes on October 6th 2021)


Formada em Física Médica pela UNESP em Botucatu Realizado no IPEN-USP/ SP: 1) Mestrado: Comparação entre métodos de fixação do iodo-125 em substrato de prata para confecção de fontes utilizadas em Braquiterapia / 2) Doutorado: Parâmetros para produção de confecção de fontes de iodo-125 utilizadas em Braquiterapia e Doutorado sanduíche: Washington State University - treinamento em radioquímica / 3) Pós doutorado: Produção de nanofontes para tratamento de câncer / 4) Projeto: Análise de formas de obtenção/produção do material nuclear para utilização em um gerador termoelétrico radioisotópico (RTG)/ Orientadora do Mestrado Profissional de Tecnologia das Radiações na Saúde/ Professora do Mestrado Profissional nas disciplinas Dosimetria para Radioterapia e Fundamentos de Radioterapia/ Professora do Mestrado Acadêmico na disciplina TNA5805 - Braquiterapia: Fundamentos, Produção, Aplicação, Dosimetria e Qualidade Research Associate do KAERI - Korean Atomic Energy and Research Institute (Texto extraído do Currículo Lattes em 06 out. 2021)

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 1 de 1
  • Artigo IPEN-doc 29700
    Radioactive seed localization for conservative surgery of nonpalpable breast cancer
    2022 - FERREIRA, HORTENCIA de J.; SOUZA, CARLA D. de; ROSTELATO, MARIA E.C.M.
    Background: The radioactive seed localization (RSL) is used in impalpable breast cancer conservative surgery to assist the surgeon in accurately locating and excising the lesion site. This study aims to present recommendations about the RSL program implementation in health institutions that perform breast cancer conservative surgery with intraoperative localization. Methods: An extensive literature review was performed. It comprehends: the committee responsible for implementation of the program actions; description of the necessary multidisciplinary team; the radiological safety committee role; the facility licensing; professionals training; material and instrumentation associated with the technique; and seed tracking system. Results: 13 topics are presented. The Program Implementation Committee must be formed by leaders from each department. The committee assumes responsibility for evaluating the necessary processes and presenting the schedule for program implementation. Since the procedure is classified as a nuclear medicine procedure it requires licensing. The Professional Team Formation, Education, and Training is a priority and simulation exercises are necessary. The Materials and Instrumentation Associated with the Technique must be well-know by the team and they should practice using radiation detectors. The seed must be always tracked, from moment they are received to discard. An Inventory for Tracking Seeds is provided. The Radiological Safety Aspects such as the ALARA principle are presented. A full description for the Radiological Procedure for Placing the seeds, the surgical removal and the Specimen Handling in Pathology focusing on how to locate the seed and retrieve them. After removed, the seeds can be placed in storage to wait for full radioactive decay or be returned to the manufacturer. Conclusions: The procedure has the advantage to increase to 2 months the time between insertion of the seed and the surgical removal. Regular multidisciplinary team meetings during program development are important to create a realistic timeline, having briefing meetings after the first 1-5 RSL cases and having annual or biannual follow-up meetings to discuss any issues or incidents.