CARLA DARUICH DE SOUZA

Resumo

Bsc in Medical Physics from UNESP in Botucatu Compleated at IPEN, University of São Paulo: 1) Master's Degree: Comparison between methods for fixing iodine-125 on silver substrate for fabricating sources used in Brachytherapy / 2) PhD: Parameters for production of iodine-125 sources used in brachytherapy and "sandwich" doctorate: Washington State University - training in radiochemistry and organic chemistry / 3) Post doctorate: Production of nanosources for the treatment of cancer / 4) Project: Analysis of methods to obtain / produce nuclear material for use in a radioisotope thermoelectric generator (RTG)/ Advisor of the Professional Master's Degree in Radiation Technology in Health / Professor of the Professional Master Program in the disciplines Dosimetry for Radiotherapy and Radiotherapy Fundamentals / Professor of the Academic Master Program in the discipline TNA5805 - Brachytherapy: Fundamentals, Production, Application, Dosimetry and Quality Research Associate of KAERI - Korean Atomic Energy and Research Institute (Text obtained from the Currículo Lattes on October 6th 2021)


Formada em Física Médica pela UNESP em Botucatu Realizado no IPEN-USP/ SP: 1) Mestrado: Comparação entre métodos de fixação do iodo-125 em substrato de prata para confecção de fontes utilizadas em Braquiterapia / 2) Doutorado: Parâmetros para produção de confecção de fontes de iodo-125 utilizadas em Braquiterapia e Doutorado sanduíche: Washington State University - treinamento em radioquímica / 3) Pós doutorado: Produção de nanofontes para tratamento de câncer / 4) Projeto: Análise de formas de obtenção/produção do material nuclear para utilização em um gerador termoelétrico radioisotópico (RTG)/ Orientadora do Mestrado Profissional de Tecnologia das Radiações na Saúde/ Professora do Mestrado Profissional nas disciplinas Dosimetria para Radioterapia e Fundamentos de Radioterapia/ Professora do Mestrado Acadêmico na disciplina TNA5805 - Braquiterapia: Fundamentos, Produção, Aplicação, Dosimetria e Qualidade Research Associate do KAERI - Korean Atomic Energy and Research Institute (Texto extraído do Currículo Lattes em 06 out. 2021)

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Artigo IPEN-doc 30360
    Review of advances in coating and functionalization of gold nanoparticles
    2024 - ROSERO, WILMMER A.A.; BARBEZAN, ANGELICA B.; SOUZA, CARLA D. de; ROSTELATO, MARIA E.C.M.
    Nanoparticles, especially gold nanoparticles (Au NPs) have gained increasing interest in biomedical applications. Used for disease prevention, diagnosis and therapies, its significant advantages in therapeutic efficacy and safety have been the main target of interest. Its application in immune system prevention, stability in physiological environments and cell membranes, low toxicity and optimal bioperformances are critical to the success of engineered nanomaterials. Its unique optical properties are great attractors. Recently, several physical and chemical methods for coating these NPs have been widely used. Biomolecules such as DNA, RNA, peptides, antibodies, proteins, carbohydrates and biopolymers, among others, have been widely used in coatings of Au NPs for various biomedical applications, thus increasing their biocompatibility while maintaining their biological functions. This review mainly presents a general and representative view of the different types of coatings and Au NP functionalization using various biomolecules, strategies and functionalization mechanisms.
  • Artigo IPEN-doc 28693
    Synthesis, in vitro testing, and biodistribution of surfactant-free radioactive nanoparticles for cancer treatment
    2022 - SOUZA, CARLA D. de; BARBEZAN, ANGELICA B.; ROSERO, WILMMER A.A.; SANTOS, SOFIA N. dos; CARVALHO, DIEGO V. de S.; ZEITUNI, CARLOS A.; BERNARDES, EMERSON S.; VIEIRA, DANIEL P.; SPENCER, PATRICK J.; RIBEIRO, MARTHA S.; ROSTELATO, MARIA E.C.M.
    New forms of cancer treatment, which are effective, have simple manufacturing processes, and easily transportable, are of the utmost necessity. In this work, a methodology for the synthesis of radioactive Gold-198 nanoparticles without the use of surfactants was described. The nuclear activated Gold-198 foils were transformed into H198AuCl4 by dissolution using aqua regia, following a set of steps in a specially designed leak-tight setup. Gold-198 nanoparticles were synthesized using a citrate reduction stabilized with PEG. In addition, TEM results for the non-radioactive product presented an average size of 11.0 nm. The DLS and results for the radioactive 198AuNPs presented an average size of 8.7 nm. Moreover, the DLS results for the PEG-198AuNPs presented a 32.6 nm average size. Cell line tests showed no cytotoxic effect in any period and the concentrations were evaluated. Furthermore, in vivo testing showed a high biological uptake in the tumor and a cancer growth arrest.