MARIA DA CONCEICAO COSTA PEREIRA

Resumo

Possui graduação em Química Industrial pela Escola Superior de Química Oswaldo Cruz (1984), Mestrado pelo Instituto de Pesquisas Energéticas e Nucleares - USP (1997) e Doutorado pelo Instituto de Pesquisas Energéticas e Nucleares - USP (2006). Atualmente é pesquisadora do Instituto de Pesquisas Energéticas e Nucleares. Possui experiência na área de Química e Engenharia Nuclear, atuando principalmente nos seguintes temas: detectores de radiação, tempo de decaimento de luminescência, cintilação e crescimento de cristais cintiladores inorgânicos. Orientadora de Mestrado (Texto extraído do Currículo Lattes em 16 nov. 2021)

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 10 de 27
  • Artigo IPEN-doc 28299
    Growth of scintillating bromide-doped cesium iodide crystals for radiation detection
    2021 - ALVES, J.P.S.; M.FILHO, T.; PEREIRA, M.C.C.
  • Artigo IPEN-doc 28297
    Zonal refining and Bridgman technique for CsI:Tl scintillation crystal growth
    2021 - SUZART, K.F.; PEREIRA, M.C.C.; HAMADA, M.M.; MESQUITA, C.H.
  • Artigo IPEN-doc 27921
    Characterization of the CsI(Tl) crystalline scintillating detector produced at IPEN
    2021 - SUZART, K.F.; VELO, A.F.; HAMADA, M.M.; PEREIRA, M.C.C.; MESQUITA, C.H.
    Cesium iodide crystal activated with thallium (CsI(Tl)) is used as radiation sensor because of its favorable characteristics as scintillator, when excited by gamma radiation. This crystal has good mechanical strength and it is relatively little hygroscopic. In the present work, the CsI(Tl) crystal was grown in the Nuclear Energy Research Institute (IPEN/CNEN/SP) by Brigdman technique, in two different formats: (a) cylindric (∅ 20.1 mm x ↑ 11.9 mm) and (b) parallelepiped (12.3 mm x ↑ 19.5 mm). The scintillator spectrometry was studied through five gamma radiation sources: 99mTc (140 keV), 133Ba (355 keV) 22Na (511 keV) and 137Cs (662 keV). The crystals were coupled to a photomultiplier tube using 0.5 McStokes viscosity silicone grease as the optical interface. All electronics for signal measurements were developed at IPEN. Luminescence property of the CsI(Tl) crystal was excited by the radiation from a 137Cs source. The energy resolution of the crystalline detector was determined by the FWHM parameter, corresponding to the photopeak width at half of its height.
  • Artigo IPEN-doc 27897
    Growth and optical characteristics of the CsI:Li scintillator crystal for use as radiation detector
    2021 - PEREIRA, M.C.C.; FILHO, T.M.; TOMAZ, L.F.; BERRETTA, J.R.
    Materials capable of converting ionizing radiation into light photons are called scintillators, some have specific efficiencies for certain applications and types of radiation, e.g. gamma, X-ray, alpha, beta and neutrons. CsI:Tl and NaI:Tl crystals are commonly found in the market because they have several applications, but few studies have been done on lithium doped cesium iodide crystal (CsI:Li). The lithium element, in this crystal used as a dopant, is also exploited as a converter for neutron detection, as it has a shock section of 940 barns for thermal neutrons. The study of the CsI:Li crystal is convenient considering the natural abundance of the lithium element with 7.5%, besides the interest in having a low cost national scintillator material, with an opportunity to search for the response of a detector for different types of radiation. The CsI:Li crystal was grown with molar concentration 10-4 to 10-1, using the vertical Bridgman technique. The parameters involved in the growth process were investigated. The transmittance was evaluated in the spectral region from 190 nm to 1100 nm. Luminescence emission spectra for the CsI:Li crystal were evaluated by photometric analysis of the crystal stimulated with a 137Cs (662 keV) source in front of the coupled sample at the monochromator input. The crystals showed maximum luminescence intensity at the wavelength of 420 nm. It was evaluated the response of the scintillators, when excited with gamma radiation of 241Am, 133Ba, 22Na, 137Cs, 60Co and neutron radiation from the AmBe source, with energy range of 1 MeV to 12 Mev.
  • Artigo IPEN-doc 26850
    Optical properties and radiation response of Li ion-doped CsI scintillator crystal
    2019 - PEREIRA, MARIA da C.C.; MADI FILHO, TUFIC; BERRETTA, JOSE R.; TOMAZ, LUCAS F.; MADI, MIRIAM N.
    Scintillators are materials that convert the energy of ionizing radiation into a flash of light. Due to the existence of different types of scintillators, they are classified into three groups according to their physicochemical characteristics, namely, inorganic, organic and gaseous scintillators. Among the inorganic crystals, the most frequently used as scintillator consist of alkali metals, in particular alkaline iodides. Scintillation materials have many applications, for instance in medical imaging, security, physics, biology, non-destructive inspection and medicine. In this study, lithium doped CsI scintillator crystals were grown using the vertical Bridgman technique. The concentration of the lithium doping element (Li) studied was 10-4 M to 10-1 M. Analyses were carried out to evaluate the developed scintillators with regard to luminescence emission and optical transmittance. The luminescence emission spectra of these crystals were measured with a monochromator for gamma radiation from 137Cs source excitation. The determination of the dopant distribution along the crystalline axis allowed the identification of the region with Li concentration uniformity, which is the region of the crystalline volume indicated for use as a radiation detector. The crystals were excited with neutron radiation from AmBe source, with the energy range of 1 MeV to 12 MeV. As neutron sources also generate gamma radiation, which can interfere with the measurement, it is necessary that the detector be able to discriminate the presence of such radiation. Accordingly, experiments were performed using gamma radiation in the energy range of 59 keV to 1333 keV in order to verify the ability of the detector to discriminate the presence of different types of radiation.
  • Artigo IPEN-doc 26849
    Study and development of neutron detectors using doped CsI crystals
    2019 - MADI FILHO, TUFIC; PEREIRA, MARIA da C.C.; BERRETTA, JOSE R.; TOMAZ, LUCAS F.; MADI, MIRIAM N.
    The development of new radiation detectors using scintillation crystals, which increase response speed, dose and energy accuracy and, at the same time, the feasibility of simplifying and reducing costs in the production process are always necessary. In the CTR-IPEN laboratory, pure and doped CsI crystals were grown using the Bridgman technique. This work shows the obtained results using a doped CsI scintillator with the converters: Br, Pb, Tl, Li as alpha, beta, gamma and neutron detectors.
  • Artigo IPEN-doc 26199
    Development and characterization of CsI (Tl) crystal for use as a radiation detector
    2019 - SUZART, KAROLINE F.; HAMADA, MARGARIDA M.; PEREIRA, MARIA da C.C.; MESQUITA, CARLOS H. de
    Cesium iodide crystal activated with thallium (CsI(Tl)) is used as radiation sensor because of its favorable characteristics as scintillator when excited by gamma radiation. This crystal has good mechanical strength and it is not hygroscopic. In the present work the CsI(Tl) crystal was growed in the Nuclear Energy Research Institute (IPEN/CNEN/SP) by Brigdman technique in different sizes. The scintillator response was studied through gamma radiation from 99mTc source with the energy of 140 keV. The crystals were coupled to a photomultiplier tube using 0.5 McStokes viscosity silicone grease as the optical interface. All electronics for signal measurements were developed at IPEN. Measurements of luminescence and gamma spectrometry of a 99mTc source were performed. The energy resolution of the crystals was determined by the spectrum photopeak considering its full width at half maximum (FWHM).
  • Artigo IPEN-doc 26195
    Growth and optics characteristics of the CsI:Li scintillator crystal for use as radiation detector
    2019 - TOMAZ, LUCAS F.; MADI FILHO, TUFIC; BERRETTA, JOSE R.; PEREIRA, MARIA da C.C.
    Materials capable of converting ionizing radiation into light photons are called scintillators, some have specific efficiencies for certain applications and types of radiation, e.g. gamma, X-ray, alpha, beta and neutrons. CsI:Tl and NaI:Tl crystals are commonly found in the market because they have several applications, but few studies have been done on lithium doped cesium iodide crystal (CsI:Li). The lithium element, in this crystal used as a dopant, is also exploited as a converter for neutron detection, as it has a shock section of 940 barns for thermal neutrons. The study of the CsI:Li crystal is convenient considering the natural abundance of the lithium element with 7.5%, besides the interest in having a low cost national scintillator material with an opportunity to search the response of a detector for different types of radiation. The CsI:Li crystal was grown with molar concentration 10-4 to 10-1, using the vertical Bridgman technique. The parameters involved in the growth process were investigated. The transmittance was evaluated in the spectral region from 190 nm to 1100 nm. Luminescence emission spectra for the CsI:Li crystal were evaluated by photometric analysis of the crystal stimulated with a 137Cs (662 keV) source in front of the coupled sample at the monochromator input. The crystals showed of maximum luminescence intensity at the wavelength of 420 nm. The response of the scintillators when excited with gamma radiation of 241Am, 133Ba, 22Na,137Cs, 60Co and neutron radiation from the AmBe source, with energy range of 1 MeV to 12 Mev was evaluated.
  • Artigo IPEN-doc 22381
    Inorganic scintillation crystals for neutron detection
    2016 - PEREIRA, MARIA da C.C.; MADI FILHO, TUFIC; CARDENAS, JOSE P.N.
  • Artigo IPEN-doc 22201
    Study of plastic scintillator detector for beta and gamma radiation measurement
    2015 - PEREIRA, MARIA da C.C.; MADI FILHO, TUFIC; CARDENAS, JOSE P.N.; VIVOLO, VITOR; BERRETTA, JOSE R.; FERNANDES, VAGNER; KUAHARA, LILIAN T.; MARQUES, CAIO P.; COSTA, PRISCILA