LEANDRO GOULART DE ARAUJO

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 4 de 4
  • Artigo IPEN-doc 29048
    Uranium biosorption by hydroxyapatite and bone meal
    2022 - WATANABE, TAMIRES; GUILHEN, SABINE N.; MARUMO, JULIO T.; SOUZA, RODRIGO P. de; ARAUJO, LEANDRO G. de
    Biosorption has been examined for the treatment of aqueous solutions containing uranium, a radiotoxic pollutant. Nevertheless, the evaluation of the role of process variables by experimental design on the use of hydroxyapatite and bone meal as biosorbents for uranium has not yet been previously addressed. In this study, the effects of adsorbent dosage (M), initial uranium concentrations ([U]0), and solution pH were investigated, using a two-level factorial design and response surface analysis. The experiments were performed in batch, with [U]0 of 100 and 500 mg L−1, pH 3 and 5, and adsorbent/uranium solution ratios of 5 and 15 g L−1. Contact time was fixed at 24 h. Removal rates were higher than 88%, with a maximum of 99% in optimized conditions. [U]0 and M were found to be the most influential variables in U removal in terms of adsorption capacity (q). The experiments revealed that bone meal holds higher adsorption capacity (49.87 mg g−1) and achieved the highest uranium removal (~ 100%) when compared to hydroxyapatite (q = 49.20 mg g−1, removal = 98.5%). The highest value of q for both biomaterials was obtained for [U]0 = 500 mg L−1, pH 3, and M = 5 g L−1. Concerning the removal percentage, bone meal achieved the best performance for [U]0 = 500 mg L−1, pH 3, and M = 15 g L−1. Further experiments were made with real radioactive waste, resulting in a high uranium adsorption capacity for both materials, with 22.11 mg g−1 for hydroxyapatite and 22.08 mg g−1 for bone meal, achieving uranium removal efficiencies higher than 99%.
  • Artigo IPEN-doc 28854
    Role of point of zero charge in the adsorption of cationic textile dye on standard biochars from aqueous solutions
    2022 - GUILHEN, SABINE N.; WATANABE, TAMIRES; SILVA, THALITA T.; ROVANI, SUZIMARA; MARUMO, JULIO T.; TENORIO, JORGE A.S.; MASEK, ONDREJ; ARAUJO, LEANDRO G. de
    The point of zero charge (PZC) is an inherent electrokinetic property of biochars (BC). It influences the adsorption process under certain pH conditions. Herein, we report the method of determination of the PZC values of ten standard BCs. We used the salt addition method to select the BCs with suitable properties for methylene blue (MB) removal from aqueous solutions. The standard BCs were obtained by pyrolyzing five different biomasses at two distinct temperatures (550°C and 700°C). The BCs derived from rice husk (pHPZC at 7.22 and 7.64 for RH550 and RH700, respectively) and softwood pellets (pHPZC at 6.57 and 6.78 for SWP500 and SWP700, respectively) were selected for their compatibility with cationic dyes such as MB. Results from adsorption experiments indicated the potential use of the RH biochar as an adsorbent for the removal of MB from aqueous solutions. The removal efficiencies were 68.83% and 71.97% for RH550 and RH700, respectively. Considerably low values were obtained for SWP550 and SWP700 (21.61% and 22.84%, respectively). Equilibrium was achieved at 2 h for RH550 and 1 h for RH700, and the adsorption kinetics for the RH BCs could be described by a pseudo-second order equation. The results revealed that even when produced under comparable conditions, BCs obtained from different feedstocks exhibited different cationic dye removing abilities. BCs optimized for the removal of cationic or anionic dyes can be easily engineered by appropriately matching the feedstock with the processing conditions.
  • Artigo IPEN-doc 27978
    Uranium biosorption by hydroxyapatite and bone meal
    2021 - WATANABE, TAMIRES; GUILHEN, SABINE N.; MARUMO, JULIO T.; ARAUJO, LEANDRO G. de
    Biosorption has been widely examined for the treatment of aqueous solutions containing uranium, a radiotoxic pollutant. The use of hydroxyapatite and bone meal as potential biosorbents in the removal of uranium (U) from aqueous solutions has not yet been previously addressed. In this work, the efficiency of these biosorbents in the removal of U was investigated according to their adsorption removal capacities. Surface transformations in both materials were observed after U adsorption by scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM/EDS). The biomass/U solution ratio was kept at 0.1 g/5 mL. Contact times for the batch experiments were 15, 30, 60, 120, and 180 min, and the concentration of U tested was 680 mg L-1. The equilibrium was achieved in less than 15 min for both materials. The morphological characteristics of each biomass, before and after biosorption experiments were analyzed. Bone meal highlighted slightly superior adsorption results in terms of maximum capacity (qmax = 33.83 mg g-1), compared to hydroxyapatite (qmax = 33.36 mg g-1), with the removal percentages being also similar, 99.97 and 98.57 %, respectively. The results so far indicate that these materials are potential biosorbents for the treatment of uranium-contaminated solutions, especially liquid radioactive waste.
  • Artigo IPEN-doc 27702
    Uranium removal from aqueous solution using macauba endocarp-derived biochar
    2021 - GUILHEN, SABINE N.; ROVANI, SUZIMARA; ARAUJO, LEANDRO G. de; TENORIO, JORGE A.S.; MASEK, ONDREJ
    The main aim of this study was to evaluate options for addressing two pressing challenges related to environmental quality and circular economy stemming from wastage or underutilization of abundant biomass residue resources and contamination of water by industrial effluents. In this study we focused on residues (endocarp) from Macaúba palm (Acrocomia aculeata) used for oil production, its conversion to activated biochar, and its potential use in uranium (U) removal from aqueous solutions. Batch adsorption experiments showed a much higher uranyl ions (U(VI)) removal efficiency of activated biochar compared to untreated biochar. As a result of activation, an increase in removal efficiency from 80.5% (untreated biochar) to 99.2% (after activation) was observed for a 5 mg L 1 initial U(VI) concentration solution adjusted to pH 3 using a 10 g L 1 adsorbent dosage. The BET surface area increased from 0.83 to 643 m2 g 1 with activation. Surface topography of the activated biochar showed a very characteristic morphology with high porosity. Activation significantly affected chemical surface of the biochar. FTIR analysis indicated that U(VI) was removed by physisorption from the aqueous solution. The adsorbed U(VI) was detected by micro X-ray fluorescence technique. Adsorption isotherms were employed to represent the results of the U adsorption onto the activated biochar. An estimation of the best fit was performed by calculating different deviation equations, also called error functions. The Redlich-Peterson isotherm model was the most appropriate for fitting the experimental data, suggesting heterogeneity of adsorption sites with different affinities for uranium setting up as a hybrid adsorption. These results demonstrated that physical activation significantly increases the adsorption capacity of macauba endocarp-derived biochar for uranium in aqueous solutions, and therefore open up a potential new application for this type of waste-derived biochar.