LEANDRO GOULART DE ARAUJO

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 10 de 12
  • Artigo IPEN-doc 29688
    An adsorption agent based on chitosan–zeolite composite
    2023 - ARAUJO, LEANDRO G. de; MEDEIROS, VINICIUS L.; GUARNIERI, GUILHERME de P.; SILVA, DANILO A. da; WATANABE, TAMIRES; MARUMO, JULIO T.; NERY, JOSE G.
    In this article, we present a chitosan–zeolite composite, which was synthesized and used as an adsorbent material for caesium (Cs) removal from aqueous media and real liquid radioactive organic waste (LROW). The compound was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy techniques. The physicochemical characterization indicates the production of a composite. Adsorption experiments were first performed using the prepared solutions contaminated with Cs using full factorial design with two variables of interest: initial Cs concentration (Cs0) and adsorbent dosage (mg L−1 ). The results indicated a high caesium removal rate with removal values above 93% and adsorption capacity of up to 10 mg g−1 . With the best experimental conditions according to our experimental domain, time was evaluated and equilibrium was reached in 180 min. Finally, the adsorbent material was tested as an adsorbent for Cs, Am, and U from LROW. When in contact with LORW, the removal rates (%) were 21.51 (137Cs), 26.39 (241Am), and 20.26 (U (total)). Although lower, this material indicated that it has the potential to be used for multi-elemental adsorption.
  • Artigo IPEN-doc 29635
    Prospects for fungal bioremediation of unburied waste packages from the Goiânia radiological accident
    2023 - TESSARO, ANA P.G.; ARAUJO, LEANDRO G. de; SILVA, THALITA T.; COELHO, EDNEI; CORREA, BENEDITO; ROLINDO, NATALIE C.; VICENTE, ROBERTO
    Goiânia, the Goiás State capital, starred in 1987, where one of the largest radiological accidents in the world happened. A teletherapy machine was subtracted from a derelict radiotherapy clinic and disassembled by scavengers who distributed fragments of the 50 TBq 137CsCl source among relatives and acquaintances, enchanted by the blue shine of the substance. During the 15 days before the accident was acknowledged, contaminated recycling materials were delivered to recycling factories in four cities in the state of São Paulo, Brazil, in the form of recycling paper bales. The contaminated bales were spotted, collected, and stored in fifty 1.6 m3 steel boxes at the interim storage facility of the Nuclear and Energy Research Institute (IPEN). In 2017, a check of the content was performed in a few boxes and the presence of high moisture content was observed even though the bales were dry when conditioned and the packages were kept sealed since then. The main objective of this work was to report the fungi found in the radioactive waste after they evolved for 30 years in isolation inside the waste boxes and their role in the decay of the waste. Examination of the microbiome showed the presence of nematodes and fungal communities. The fungi species isolated were Aspergillus quadricinctus, Fusarium oxysporum, Lecanicillium coprophilumi, Scedosporium boydii, Scytalidium lignicola, Xenoacremonium recifei, and Pleurostoma richardsiae. These microorganisms showed a significant capacity to digest cellulose in our trials, which could be one of the ways they survive in such a harsh environment, reducing the volume of radioactive paper waste. These metabolic abilities give us a future perspective of using these fungi in biotechnology to remediate radioactively contaminated materials, particularly cellulose-based waste.
  • Artigo IPEN-doc 29048
    Uranium biosorption by hydroxyapatite and bone meal
    2022 - WATANABE, TAMIRES; GUILHEN, SABINE N.; MARUMO, JULIO T.; SOUZA, RODRIGO P. de; ARAUJO, LEANDRO G. de
    Biosorption has been examined for the treatment of aqueous solutions containing uranium, a radiotoxic pollutant. Nevertheless, the evaluation of the role of process variables by experimental design on the use of hydroxyapatite and bone meal as biosorbents for uranium has not yet been previously addressed. In this study, the effects of adsorbent dosage (M), initial uranium concentrations ([U]0), and solution pH were investigated, using a two-level factorial design and response surface analysis. The experiments were performed in batch, with [U]0 of 100 and 500 mg L−1, pH 3 and 5, and adsorbent/uranium solution ratios of 5 and 15 g L−1. Contact time was fixed at 24 h. Removal rates were higher than 88%, with a maximum of 99% in optimized conditions. [U]0 and M were found to be the most influential variables in U removal in terms of adsorption capacity (q). The experiments revealed that bone meal holds higher adsorption capacity (49.87 mg g−1) and achieved the highest uranium removal (~ 100%) when compared to hydroxyapatite (q = 49.20 mg g−1, removal = 98.5%). The highest value of q for both biomaterials was obtained for [U]0 = 500 mg L−1, pH 3, and M = 5 g L−1. Concerning the removal percentage, bone meal achieved the best performance for [U]0 = 500 mg L−1, pH 3, and M = 15 g L−1. Further experiments were made with real radioactive waste, resulting in a high uranium adsorption capacity for both materials, with 22.11 mg g−1 for hydroxyapatite and 22.08 mg g−1 for bone meal, achieving uranium removal efficiencies higher than 99%.
  • Artigo IPEN-doc 28679
    Enhanced removal of radium from radioactive oil sludge using microwave irradiation and non-ionic surfactant
    2022 - LINHARES, VANESSA do N.; ARAUJO, LEANDRO G. de; VICENTE, ROBERTO; MARUMO, JULIO T.
    Surfactant-based technologies have been studied for the treatment of radioactive waste containing isotopes of radium. Nevertheless, the use of combined processes to remove radium from radioactive oil sludge is scarce in the literature. The objective of this work was to investigate the potential of a non-ionic surfactant to remove radium from raw oil sludge (ROS) and pre-treated, microwave-irradiated oil sludge (POS). Characterization of ROS and POS was made using the following methods: Thermal Gravimetric Analysis, X-ray diffraction, Scanning Electron Microscopy coupled with Energy-Dispersive X-ray Spectroscopy, and gamma spectrometry. The effects of surfactant concentration (0.5–7.5%), temperature (25-60 °C), and contact time (30 and 60 min) were investigated. For ROS, little or no influence on the decontamination process was found for variations in the selected process parameters. For POS, the lowest surfactant concentration (2.5%) was the most efficient, removing about 94% of 226Ra and 228Ra. Neither contact time nor temperature affected removal. For ROS, removal percentages were 50–60% for 226Ra and 35–45% for 228Ra. The results indicated that the surfactant acted more efficiently in the decontamination of POS.
  • Artigo IPEN-doc 28406
    Experimental study on treatment of simulated radioactive waste by thermal plasma
    2021 - PRADO, E.S.P.; MIRANDA, F.S.; ARAUJO, L.G.; PETRACONI, G.; BALDAN, M.R.; ESSIPTCHOUK, A.; POTIENS JUNIOR, A.J.
    Thermal plasma technology is a process that demonstrates high performance for the processing of different types of waste. This technology can also be applied in the treatment of radioactive wastes, which requires special care. Beyond that, volumetric reduction, inertization, as well as a cheap and efficient process are necessary. In this context, the purpose of this paper is to demonstrate the application of thermal plasma technology for the treatment of solid radioactive waste. For this, stable Co and Cs were used to simulate compactable and non-compactable radioactive waste; about 0.8 g Co and 0.6 g Cs were added in each experimental test. The experimental tests were conducted using plasma of transferred arc electric discharge generated by the graphite electrode inside the process reactor. The behavior and distribution of the radionuclides present in the waste were assessed during the plasma process. The results show that the significant amounts of Co and Cs leave the melt by volatilization and are transferred to the gas phase with a small portion retained in the molten slag. The retention rate of Co in the slag phase is about 0.03% and 0.30% for compactable and non-compactable waste, respectively. On the other hand, Cs is completely transferred to the gas phase when added to the compactable waste. Conversely, when in the non-compactable waste, only 1.4% Cs is retained.
  • Resumo IPEN-doc 28390
    Biossorção de urânio por meio de hidroxiapatita e farinha de osso
    2021 - WATANABE, TAMIRES; MARUMO, JULIO T.; ARAUJO, LEANDRO G. de
  • Artigo IPEN-doc 27884
    Preliminary studies on electron beam irradiation as a treatment method of radioactive oil sludge
    2021 - TESSARO, A.P.G.; VICENTE, R.; MARUMO, J.T.; TEIXEIRA, A.C.S.C.; ARAUJO, L.G.
    Radiation-induced advanced oxidation processes have been proposed for the treatment of various types of wastes. However, electron beam technologies for the removal of recalcitrant compounds in petroleum wastes are still poorly understood. This work aims at evaluating the effects on the degradation of organic matter from oil sludge by electron beam irradiation. Characterization methods were employed to identify the chemical elements present in the waste. Radiometric analysis was performed to identify radionuclides and measure dose rates. Preliminary immobilization of the untreated waste with cement indicated resistance values very close to the minimum established in national regulation. To treat the waste, an electron beam accelerator, model Dynamitron II, with variable current up to 25 mA was employed and the irradiation doses ranged from 20 to 200 kGy. Solutions were prepared with an initial H2O2 concentration of 1.34 mol·L-1. The effects on the removal of total organic carbon are discussed.
  • Artigo IPEN-doc 26681
    Radiochemical characterization of spent filter cartridges from the primary circuit of a research reactor
    2019 - GERALDO, BIANCA; ARAUJO, LEANDRO G. de; TADDEI, MARIA H.T.; FERREIRA, MARCELO T.; MADUAR, MARCELO F.; VICENTE, ROBERTO; MARUMO, JULIO T.
    Radiochemical-based analyses have been used for the characterization of radioactive waste. Nevertheless, the determination of alpha, beta and gamma emitters by radiochemical analysis of spent cartridge filters from a swimming-pool type reactor has not been previously addressed. This work aims at identifying and quantifying the radionuclides present in this waste, including the difficult to measure radionuclides. The distribution of the radionuclides in the filter was investigated by the determination of gamma-emitting nuclides and the z-score of the measured activity concentrations. The results indicated that all the filters are homogeneous, meeting the homogeneity criteria recommended by the International Atomic Energy Agency.
  • Artigo IPEN-doc 19353
    Chemical analysis of radioactive mixed liquid wastes by alpha/gamma spectrometry, ICP-OES and arsenazo III
    2013 - FERREIRA, EDUARDO G.A.; FERREIRA, RAFAEL V.P.; ARAUJO, LEANDRO G.; TADDEI, MARIA H.T.; DELLAMANO, JOSE C.; MARUMO, JULIO T.
  • Artigo IPEN-doc 19306
    Evaluation of the resin oxidation process using Fento's reagent
    2013 - ARAUJO, LEANDRO G.; GOES, MARCOS M.; MARUMO, JULIO T.