RENE RAMOS DE OLIVEIRA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Artigo IPEN-doc 27815
    The occurrence of a peripheral coarse grain zone (PCGZ) in extruded bars of AA 7108
    2021 - SOUZA, SAUL H. de; PLAUT, RONALD L.; LIMA, NELSON B. de; OLIVEIRA, RENE R. de; PADILHA, ANGELO F.
    Industrial-scale extruded profiles of AA 7108 with a rectangular section (25.60 mm x 15.95 mm) were used in this investigation. Some complementary microstructural analysis techniques, such as polarized light microscopy, EBSD (Electron Backscatter Diffraction) and X-ray diffraction were used to characterize the microstructure, focusing on the PCG zone. It was observed that the extruded profiles presented a totally recrystallized microstructure and a 300 μm layer of peripheral coarse grains. Additionally, the results showed that the PCGZ predominant grain orientation {311} <110> differs from the texture below the PCGZ (Goss and Cube components).
  • Artigo IPEN-doc 23039
    Supercapacitor application of powder prepared using the Hydrogenation Disproportionation Desorption and Recombination (HDDR) process in graphene oxide
    2017 - CASINI, JULIO C.S.; FERNANDEZ, ANTONIO P.R.; OLIVEIRA, RENE R. de; SAKATA, SOLANGE K.; FARIA JUNIOR, RUBENS N.
    Graphene (G) has been attracted great interest for its excellent electrical properties. However, the large-scale production of graphene is presently unfeasible. Graphene oxide (GO) can be (partly) reduced to graphene-like sheets by removing the oxygen-containing groups with the recovery of a conjugated structure. It can be produced using inexpensive graphite as raw material by cost-effective chemical methods. Although hydrogen (mixed with argon) at high temperature (1100°C) has been employed to reduce GO powder, the hydrogenation disproportionation desorption and recombination (HDDR) process in particular was unreported for this purpose. In the present work, attempts of reducing GO powder using the HDDR process have been carried out and investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). The experimental results of processing graphene oxide powder using unmixed hydrogen at moderate temperatures (about 850°C) and relatively low pressures (<2 bars) have been reported.