NATHALIA ZANINI ALVES STEPHANO

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 10 de 11
  • Artigo IPEN-doc 29925
    Caries preventive action of Nd:YAG and fluoride in three different pH conditions
    2023 - JUVINO, AMANDA C.; ZANINI, NATHALIA A.; AVELINO, SABRINA G.; OLIVEIRA, YASMIN R.F. de; GERMANO, GLEICE C.M.; EDUARDO, CARLOS de P.; ZEZELL, DENISE M.
    This in vitro study aimed to evaluate the preventive action of topical fluoride application combined with laser irradiation under different pH conditions using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning ElectronMicroscopy (SEM). A total of 180 samples of human dental enamel were prepared and divided into groups: Negative Control, Fluoride (FFA 12.300 F􀀀/g), Laser (Nd:YAG 84.9 J/cm2), and Laser + Fluoride (Nd:YAG 84.9 J/cm2 + FFA 12.300 F􀀀/g). The pH cycling was performed at three different pH conditions: pH 5 (below the critical pH for hydroxyapatite), pH 4.5 (below the critical pH in the presence of fluorapatite), and pH 4 (investigating acid resistance of hydroxyapatite and fluorapatite forms with laser irradiation). In the FTIR analysis, the Laser + Fluoride group demonstrated statistically significant differences compared to the Negative Control group and Fluoride group at pH 4.5 and pH 4 when evaluating the phosphate bands. Similar results were observed in the SEM analysis, where the Laser + Fluoride group exhibited lower demineralization compared to the other treatments at pH 4.5 and pH 4. In conclusion, the Laser + Fluoride group demonstrated a significant reduction in demineralization even at pH levels below the critical threshold for fluorapatite, highlighting its superior acid resistance compared to fluoride alone.
  • Artigo IPEN-doc 28817
    Erbium laser in the debonding of ceramics
    2022 - ZANINI, NATHALIA A.; CARAMEL-JUVINO, AMANDA; ANA, PATRICIA A.; ZEZELL, DENISE M.
    Background: The debonding of crowns and ceramic veneers with laser is already a reality in the clinic. It presents benefits in comparison to traditional removal with the use of a rotating instrument; however, there is still no consolidated protocol and many professionals use it without the necessary scientific basis. Objective: The aim of this work was to perform a literature review on the debonding of indirect ceramic restorations using the Er:YAG and Er,Cr:YSGG lasers to provide clinical professionals and the scientific community a careful analysis, and also to guiding the use of irradiation at laser for such procedures. Methods: Bibliographic searches were performed in the following databases: Pubmed, Web of Science and Google Scholar. According to the inclusion criteria adopted, twenty-seven clinical and in vitro studies were selected in the period from 2007 to 2021. In the present work, the composition of the crowns and facets, as well as the types of cement and the laser irradiation protocols adopted in the selected studies is detailed. Conclusions: It was concluded that the use of erbium lasers for debonding of indirect ceramic restorations proved to be more selective and conservative when compared to removal with a rotary diamond instrument. Furthermore, it was shown to be in more efficient in debonding different types of ceramics. However, there are great variations in the “debonding” protocols, which emphasizes the need for further studies that seek to standardize the irradiation protocols considering the different clinical situations.
  • Artigo IPEN-doc 28103
    Evaluation of the anti-caries effect beyond the critical enamel pH of preventive treatment of fluoride associated with Nd:YAG laser irradiation
    2021 - JUVINO, AMANDA C.; ROMANO, MARIANA; ALVES, NATHALIA Z.; FREITAS, THAIS R.; ZAMATARO, CLAUDIA B.; ZEZELL, DENISE M.
    This study aimed to evaluate the anti-caries effect of fluoride associated with Nd:YAG laser irradiation in the h-eatment of enamel Eight groups (n = S) were analyzed: Negative Control pH 4.5; Negative control pH 4; Fluoride pH 4.5; Fluoride pH 4; Nd-YAG pH 4.5; Nd-YAG pH 4; (Fluoride + Nd-YAG) pH 4.5 and (Fluoride + Nd-YAG) pH 4. All samples were analyzed by Scanning Electron Microscopy (SEM) before and after the cycle. Quantification of phosphorus in the cycling solutions was carried out using the colorimetric method, as an indication of enamel demineralization. The anti-caries effect of the Fluoride + Nd: YAG treatment in addition to the critical pH of the enamel can be observed in the morphological analysis, however in the analysis of the demineralization solutions, the amount of phosphorus showed a difference only in the Fluoiide group compared to the others in the investigative pH.
  • Dissertação IPEN-doc 28016
    Estudo in vitro para determinação de protocolo de irradiação para remoção de facetas cerâmicas em esmalte dental com laser de Er,Cr:YSGG
    2021 - ALVES, NATHALIA Z.
    A reabilitação estética por meio de facetas cerâmicas tornou-se prática frequente nas clínicas odontológicas. Contudo sua substituição, por diversos motivos, pode-se fazer necessária O uso do laser pode facilitar essa remoção quando necessária. Este trabalho tem como objetivo elaborar um protocolo para remover facetas cerâmicas sem causar danos à estrutura pulpar através da avaliação da irradiação com laser de Er,Cr:YSGG pulsado, bem como analisar se estes parâmetros causam alguma alteração morfológica, química ou óptica nos prismas de esmalte e se o aumento de temperatura ultrapassa 5,5 °C e 11 °C, valores esses que poderiam gerar danos a polpa e aos ligamentos periodontais, respectivamente. Na primeira parte do experimento foram preparados 180 fragmentos de dentes humanos que foram distribuídas aleatoriamente em 12 grupos experimentais (N=15), sendo 6 grupos irradiados e 6 grupos controle. Para a colagem das facetas cerâmicas de dissilicato de lítio com 0,7 mm utilizamos três diferentes cimentos resinosos (Variolink Veneer, RelyX U200 e RelyX Veneer). O cimento Rely X U200 não é um cimento resinoso preconizado pelo fabricante para s cimentação de facetas, mas mesmo assim o utilizamos, para remover quaisquer dúvidas relacionadas à alteração morfológica ocorrida no esmalte devido ao condicionamento ácido. O laser de Er,Cr:YSGG (2,78 μm) foi usado em dois protocolos de irradiação: 3,5 W; 48,14 J/cm2; 20 Hz, sem contato e 3,0 W de potência média; 40J/cm2 de densidade de energia e taxa de repetição de 20 Hz, sem contato e após a irradiação realizamos cisalhamento em todas as amostras. As análises morfológicas, ópticas e elementares do esmalte foram realizadas antes da cimentação e após a remoção, utilizando microscopia eletrônica de varredura (MEV), tomografia de coerência óptica (OCT) e espectroscopia de fluorescência de raios X de energia dispersiva (EDS). Na segunda parte do experimento foram utilizados 60 dentes humanos (incisivos inferiores) e estes foram distribuídos aleatoriamente em 12 grupos experimentais (N=5), sendo 6 grupos irradiados a laser e 6 grupos controle (remoção com instrumento rotatório diamantado), nos quais realizamos a análise de temperatura durante a remoção das facetas por ambos os métodos. O nível de significância estatística adotado foi de 5%. As medidas por EDS, após a remoção das facetas, revelaram um aumento significativo na quantidade de silício e carbono, bem como uma diminuição no conteúdo de cálcio e fosfato. A análise morfológica mostrou alteração dos prismas do esmalte nos grupos no quais foram utilizados os cimentos RelyX Veneer e Variolink Veneer, sendo esta alteração não decorrente da irradiação com laser. Apesar de não observamos alterações morfológicas nos prismas de esmalte, ocorreu aumento no coeficiente de atenuação óptica em dois grupos. Para avaliar o tipo de fratura que ocorreu no momento do cisalhamento, utilizamos as imagens geradas pelo MEV em um aumento de 50X e realizamos um teste de concordância intra-avaliador, Kappa = 0,951, e observamos que nos grupos com irradiação a laser de 3W as fraturas foram predominantemente do tipo adesiva. Nos grupos com irradiação a laser de 3,5W as fraturas foram predominantemente do tipo coesiva e nos grupos controles observamos uma variação entre os 3 padrões de fratura variando confirme o tipo de cimento resinoso, sendo que nos grupos CRU3 e CRU3,5 nenhuma fratura coesiva ocorreu. A análise de temperatura constatou que o uso de instrumento rotatório diamantado apresentou valores estatisticamente maiores quando comparados com a remoção a laser. Conclui-se que o laser de Er,Cr:YSGG é eficaz para remover laminados de dissilicato de lítio sem causar danos aos prismas de esmalte.
  • Resumo IPEN-doc 27992
    Removal of laminates with Er,Cr:YSGG laser from dental enamel submitted to gamma radiation
    2019 - RABELO, THAIS F.; ZAMATARO, CLAUDIA B.; ZANINI, NATHALIA; JUVINO, AMANDA C.; KUCHAR, NIELSEN G.; CASTRO, PEDRO A.A.; ZEZELL, DENISE M.
    Background: Modern Dentistry is characterized by the search for aesthetic perfection in the smile. Many efforts are made regarding procedures related to manufacturing, cementing, maintenance and removal of ceramic laminates. The laser removal of laminates has become more frequent when the aesthetical procedures needs to be replaced. On the other hand, the head and neck cancer treatment causes comorbidities in the buccal environment when laminates are in place. Objective: To evaluate in vitro the removal of ceramic fragments by means of Er,Cr:YSGG laser irradiation, after gamma radiation. Methods: 20 Lithium disilicate veneers were cemented with Variolink to human dental enamel and then samples were irradiated with 0.07 kGy. After gamma irradiation, the laminates removal with Er,Cr:YSGG laser was performed. The control group was not subjected to gamma radiation. Dental enamel samples were analyzed by Scanning Electron Microscopy (SEM), Fourier Transformed Infrared Spectroscopy (FTIR) and Surface Microhardness Loss (SMH). Results: SEM has shown that less cement was found after removal of the facets in gamma irradiated group when compared to the control. For both groups there was alteration of the SMH possibly due to the use of the adhesive system. When performed intra group analysis, the sample being its own control of baseline in the FTIR analysis, there were no band shifts or formation of new compounds on the surface of human dental enamel. Conclusions: The Er,Cr:YSGG laser is an effective alternative for laminates removal in human dental enamel even when it is subjected to gamma radiation.
  • Artigo IPEN-doc 27710
    Morphological, optical, and elemental analysis of dental enamel after debonding laminate veneer with Er,Cr:YSGG laser
    2021 - ZANINI, NATHALIA A.; RABELO, THAIS F.; ZAMATARO, CLAUDIA B.; CARAMEL-JUVINO, AMANDA; ANA, PATRICIA A.; ZEZELL, DENISE M.
    Laminate veneer removal is becoming a routine procedure at the dental clinic and the use of laser can facilitate its removal. This work aimed to evaluate the morphological, elemental, and optical changes in the remaining enamel after veneer removal using Er,Cr:YSGG laser. Forty‐four enamel slabs were prepared and randomly distributed into nine experimental groups, for bonding using lithium disilicate laminates with three different luting agents (Variolink Veneer, RelyX U200, and RelyX Veneer). Then each agent was debonded using Er,Cr:YSGG laser (2.78 μm) using two different protocols:3.5 W, 48.14 J/cm2, 20 Hz non‐contact and 3.0 W, 48.14 J/cm2, 20 Hz non‐contact. The morphological, optical, and elemental analysis of enamel was performed before cementation and after laser debonding, using scanning electron microscopy (SEM), optical coherence tomography (OCT), and energy‐dispersive X‐ray spectroscopy (EDS). The level of statistical significance adopted was 5%. The EDS analysis of enamel after debonding revealed a significant increase in silane and carbon, as well as a decrease in calcium and phosphate contents. Analysis showed the presence of residual cement in most experimental groups but the morphological analysis showed alteration of the enamel's prisms only in the groups that used RelyX Veneer and Variolink Veneer cements. There was no evidence of deleterious morphological changes resulting from irradiation. However, an increase in the optical attenuation coefficient by the OCT was observed due to the presence of the remaining cement. It can be concluded that the Er,Cr:YSGG laser, in the mean powers used, is efficient for veneer removal without causing deleterious effects for the enamel.
  • Artigo IPEN-doc 27155
    Human dental enamel evaluation after radiotherapy simulation and laminates debonding with Er,Cr:YSGG using SEM and EDS
    2019 - RABELO, THAIS F.; ZAMATARO, CLAUDIA B.; KUCHAR, NIELSEN G.; ZANINI, NATHALIA; JUVINO, AMANDA C.; DEL-VALLE, MATHEUS; CASTRO, PEDRO A.A.; SANTOS, MOISES O.; ZEZELL, DENISE M.
    The pursuit of perfection makes younger people undergo aesthetic procedures without formal indication. However, young patients may be susceptible to a disease such as head and neck cancer which treatment can compromise the adhesion of these indirect mate-rials. Here, we present an analyze, of the gamma radiation effects on crystallographic morphology of human dental enamel after laminate veneer debonding with Er,Cr:YSGG laser. Thus, human dental enamel samples were prepared and randomized into 2 groups (n=10): Laser Irradiation (L) and Gamma + Laser Irradiation (GL) group. Scanning elec-tron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were performed before bonding and after debonding using Er,Cr:YSGG. Only Gamma + Laser Irradia-tion group received a cumulative dose of 70 Gy gamma radiation used in head and neck cancer radiotherapy. SEM images showed that both GL and L groups presented altered morphology. EDS showed an decrease in Ca and P intensities after laser debonding of laminates veneers in both group. Therefore, a proper laser facet removal protocol should be established for healthy patients and patients who have been exposed to radiotherapy for head and neck cancer.
  • Artigo IPEN-doc 26236
    Effect of Er,Cr:YSSG laser on dental Veneers removal submitted to gamma radiation
    2019 - ZANINI, NATHALIA; RABELO, THAIS F.; ZAMATARO, CLAUDIA B.; JUVINO, AMANDA C.; KUCHAR, NIELSEN G.; CASTRO, PEDRO A.A. de; ANA, PATRICIA A. da; ZEZELL, DENISE M.
    The search for aesthetical rehabilitive treatment such as porcelain veneers is increasing over the past years. After CEP-FOUSP approval, the present study investigated the debonding of 20 ceramic fragments of lithium disilicate(5x5x1 mm) from human dental enamel bond with Variolink ® N. The samples were splitted in two groups: control (without gamma irradiation) and treatment (gamma irradiation: GL). EDS and FTIR was performed on enamel in both groups, before and after treatment. After cementation of the ceramic fragments the control group was only irradiated with Er, Cr: YSGG laser (λ = 2.78 nm) to remove the fragments, whereas the GL was gamma irradiated with 0.07 kGy followed by laser irradiation Er, Cr: YSGG for removal of laminates.The laser parameters were previously determined as follows: 3.5 W. The gamma and laser (GL) group was exposed to gamma radiation and the erbium laser was applied in both groups to remove lithium disilicate laminates from human dental enamel. Thus, the load required to remove the laminates after simulation of the radiotherapy treatment in the human dental enamel was analyzed by mechanical assay. In this assay, the GL group presented higher loads for the removal of the laminates compared to the control group. This indicates that the gamma radiation induces a water radiolysis by modifying the hybrid layer of the adhesive cement and increases the bond between the enamel and the resin cement, which hinders the laser debonding of the laminates.
  • Artigo IPEN-doc 26235
    FTIR analysis of human dentin submitted to gamma radiation
    2019 - KUCHAR, NIELSEN G.; ZAMATARO, CLAUDIA B.; CASTRO, PEDRO A.A. de; RABELO, THAIS F.; JUVINO, AMANDA C.; ZANINI, NATHALIA; ZEZELL, DENISE M.
    Global data indicate that head and neck cancer express one of the sixth most common types of malignant cancers. In 2030, head and neck cancer predict 1,031,439 new cases per year around the world. Radiation therapy is used as a major therapy step in the treatment protocol for head and neck malignancies. Radiation caries consists in a side effect of xerostomia, ie a considerable reduction in the quantity and quality of saliva in the oral cavity, being defined as a type of cavity that advance severely with fast progression being able to injure the dental pulp. Gamma radiation effects can promote changes associated to modification in the enamel prismatic structure, the reduction in surface microhardness and biochemically alterations in the tooth composition. However, other studies where the human dental enamel using ionizing radiation present no differences found in the integrity of the dental enamel and there was no interference in the surface microhardness. In this study, 20 human dentin samples were evaluated, split randomly into the control group and irradiated group at 25 kGy, in the Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The FTIR shows that no significant changes were found in the Phosphate band representing the inorganic material. On the other hand, the Amide I band -chosen as the representative of the organic matrix composed mainly of collagen- showed a significant difference, suggesting a degradation of the organic content. These findings corroborate with SEM analysis after the gamma irradiation dose at 25 kGy.
  • Resumo IPEN-doc 26005
    Calcium analysis from gamma sterilized human dentin and enamel
    2019 - ZAMATARO, CLAUDIA B.; KUCHAR, NIELSEN G.; SCAPIN, MARCOS A.; ZANINI, NATHALIA; CASTRO, PEDRO; RABELO, THAIS F.; JUVINO, AMANDA C.; ZEZELL, DENISE
    Gamma radiation changes the patients0 oral cavity undergoing radiotherapy. Alterations cause an unsaturated environment of calcium and phosphate into the oral cavity. After approval of the Ethics Committee, 20 hu- man teeth were sectioned to obtain 20 human enamel and 20 dentin samples, polished plane. Samples were randomized in the irradiated group and control group (untreated). Then, the treatment group was irradiated with 25:0 kGy at the 60Co multipurpose irradiator. After the gamma irradiation, Fourier Transformed Infrared Spectroscopy (FTIR), percentage of surface microhardness loss (%SMHL) and Scanning Electron Microscopy (SEM) were performed. At the end, acidic biopsies were performed to quantify the concentration of calcium present in the samples. FTIR showed that the molecular structure of HA of the enamel is similar to the non- irradiated, with no formation or loss of molecular compounds occurring. X-ray °uorescence at enamel samples was performed. Microscopic morphological analysis did not shown signi¯cant di®erences. Surface microhardness is an indirect indicator of the mineral content of the samples. The mean obtained was 258:2 (38:8) KHN within the hardness spectrum of the healthy natural enamel. The compounds present in the samples and the values of the ratios of Calcium and Phosphate oxides and relation between the elements Calcium and Phosphorus. The ratio of the most stable oxides shows a variation with linear correlation. In the enamel, the ratio (Ca/P) shows a change in the elemental content with linear correlation (R2 = 1). These ¯ndings lead us to a new hypothesis of behaviour of the HA crystal versus gamma irradiation. On the other hand for the irradiated dentin, the Knoop hardness number was within the range of the spectrum similar to that of natural dentin of human origin. X-ray °uorescence shows that irradiated dentin has great similarity with natural dentin from the point of view of chemical composition. SEM analyses showed that there was no thermal damage or interprismatic morpho- logical changes in the hydroxyapatite structure of human dental dentin outside the buccal environment when using doses of gamma irradiation up to 25 kGy.