PEDRO ERNESTO UMBEHAUN

Resumo

Possui graduação em Engenharia Mecânica pela Fundação Educacional Inaciana Padre Sabóia de Medeiros -FEI (1985), mestrado em Tecnologia Nuclear pela Universidade de São Paulo (2000) e doutorado em Tecnologia Nuclear pela Universidade de São Paulo (2016). Atualmente é Tecnologista Sênior no Instituto de Pesquisas Energéticas e Nucleares da Comissão Nacional de Energia Nuclear. Tem experiência na área de Engenharia Nuclear, com ênfase em Transferência de Calor, atuando principalmente nos seguintes temas: termo-hidráulica de núcleo de reatores nucleares, engenharia nuclear, reatores de pesquisa, e reator nuclear de potência. Atualmente professor convidado na Escola Politécnica da Universidade de São Paulo nas disciplinas Termohidráulica de Sistemas de Geração de Potência I e II. (Texto extraído do Currículo Lattes em 4 maio 2023)

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 4 de 4
  • Artigo IPEN-doc 30370
    Assessment of the IEA-R1 nuclear reactor using a nonstandard fuel assembly with six fuel plates of the Brazilian Multipurpose Reactor
    2024 - SOARES, HUMBERTO V.; TORRES, WALMIR M.; UMBEHAUN, PEDRO E.; BELCHIOR, ANTONIO; ANDRADE, DELVONEI A. de
    In order to qualify the fuel plates of the Brazilian Multipurpose Reactor (RMB), a nonstandard Instrumented Fuel Assembly (IFA) was designed and is being constructed to be burned in the IEA-R1 nuclear research reactor. IFA has fuel plates of different uranium densities (10 fixed fuel plates of 3.0 gU/cm3 – IEA-R1 standard; 6 removable fuel plates of 3.7 gU/cm3 – RMB; and a central aluminum plate). This paper is the first step to demonstrate that IEA-R1 can safely operate with this IFA. To verify the IFA thermal behavior inside the IEA-R1 core during reactor operation and certify the no power peaks occurrence, the power distribution was calculated for each fuel plate. LEOPARD and HAMMER-TECHNION codes were utilized to calculate the core thermal neutron cross section and CITATION code to calculate the core power distribution. Calculations were performed for 5 MW reactor power considering the IFA placed in a core peripheral position. The RMB fuel plates average power was 4.73 % higher compared to IEA-R1 fuel plates. This was expected due to the higher density of uranium in these plates. The power of each IFA fuel plate was compared with a fresh IEA-R1 Fuel Assembly (FA) at the same core position. The power in the IFA hottest plate is only 6.79 % higher than the correspondent IEA-R1 fuel plate. The IFA power distribution was also compared to the hottest FA of the core. The power of each IFA fuel plate was below its correspondent hottest FA fuel plate. In addition, the total IFA power is 18.40 % less than the hottest FA in the core. No significant power peaks occur in the IFA during operation. As future works, thermal–hydraulic calculations will be performed considering this calculated power distribution and no hot spots are expected.
  • Artigo IPEN-doc 27183
    Total and partial loss of coolant experiments in an instrumented fuel assembly of IEA-R1 research reactor
    2020 - MAPRELIAN, EDUARDO; TORRES, WALMIR M.; BELCHIOR JUNIOR, ANTONIO; UMBEHAUN, PEDRO E.; BERRETTA, JOSE R.; SABUNDJIAN, GAIANE
    The safety of nuclear facilities has been a growing global concern, mainly after the Fukushima nuclear accident. Studies on nuclear research reactor accidents such as the Loss of Coolant Accident (LOCA), many times considered a design basis accident, are important for ensure the integrity of the plant. A LOCA may lead to the partial or complete uncovering of the fuel assemblies and it is necessary to assure the decay heat removal as a safety condition. This work aimed to perform, in a safe way, partial and complete uncovering experiments for an Instrumented Fuel Assembly (IFA), in order to measure and compare the actual fuel temperatures behavior for LOCA in similar conditions to research reactors. A test section for experimental simulation of Loss of Coolant Accident named STAR was designed and built. The IFA was irradiated in the IEA-R1 core and positioned in the STAR, which was totally immersed in the reactor pool. Thermocouples were installed in the IFA to measure the clad and fluid temperatures in several axial and radial positions. Experiments were carried out for five levels of uncovering of IFA, being one complete uncovering and four partial uncovering, in two different conditions of decay heat. It was observed that the cases of complete uncovering of the IFA were the most critical ones, that is, those cases presented higher clad temperatures when compared with partial uncovering cases, for the specific conditions of heat decay intensity and dissipation analyzed. The maximum temperatures reached in all experiments were quite below the fuel blister temperature, which is around 500 °C. The STAR has proven to be a safe and reliable experimental apparatus for conducting loss of coolant experiments.
  • Artigo IPEN-doc 24758
    Classification of natural circulation two-phase flow image patterns based on self-organizing maps of full frame DCT coefficients
    2018 - MESQUITA, ROBERTO N. de; CASTRO, LEONARDO F.; TORRES, WALMIR M.; ROCHA, MARCELO da S.; UMBEHAUN, PEDRO E.; ANDRADE, DELVONEI A.; SABUNDJIAN, GAIANE; MASOTTI, PAULO H.F.
    Many of the recent nuclear power plant projects use natural circulation as heat removal mechanism. The accuracy of heat transfer parameters estimation has been improved through models that require precise prediction of two-phase flow pattern transitions. Image patterns of natural circulation instabilities were used to construct an automated classification system based on Self-Organizing Maps (SOMs). The system is used to investigate the more appropriate image features to obtain classification success. An efficient automated classification system based on image features can enable better and faster experimental procedures on two-phase flow phenomena studies. A comparison with a previous fuzzy inference study was foreseen to obtain classification power improvements. In the present work, frequency domain image features were used to characterize three different natural circulation two-phase flow instability stages to serve as input to a SOM clustering algorithm. Full-Frame Discrete Cosine Transform (FFDCT) coefficients were obtained for 32 image samples for each instability stage and were organized as input database for SOM training. A systematic training/test methodology was used to verify the classification method. Image database was obtained from two-phase flow experiments performed on the Natural Circulation Facility (NCF) at Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN), Brazil. A mean right classification rate of 88.75% was obtained for SOMs trained with 50% of database. A mean right classificationrate of 93.98% was obtained for SOMs trained with 75% of data. These mean rates were obtained through 1000 different randomly sampled training data. FFDCT proved to be a very efficient and compact image feature to improve image-based classification systems. Fuzzy inference showed to be more flexible and able to adapt to simpler statistical features from only one image profile. FFDCT features resulted in more precise results when applied to a SOM neural network, though had to be applied to the full original grayscale matrix for all flow images to be classified.
  • Artigo IPEN-doc 20869
    International benchmark study of advanced thermal hydraulic safety analysis codes against measurements on IEA-R1 research reactor
    2014 - HAINOUN, A.; DOVAL, A.; UMBEHAUN, P.; CHATZIDAKIS, S.; GHAZI, N.; PARK, S.; MLADIN, M.; SHOKR, A.