MARYCEL ELENA BARBOZA COTRIM

Resumo

Bachelor's at QuĆ­mica from Faculdades Osvaldo Cruz (1985), master's at Tecnologia Nuclear from Instituto de Pesquisas Energeticas E Nucleares (1991) and doctorate at Tecnologia Nuclear from Instituto de Pesquisas Energeticas E Nucleares (2006). Has experience in Chemistry, focusing on Separation, acting on the following subjects: avaliaĆ§Ć£o ambiental, metais, quĆ­mica ambiental, qualidade da Ć”gua and quĆ­mica analĆ­tica. (Text obtained from the CurrĆ­culo Lattes on November 17th 2021)


Mestrado em Tecnologia Nuclear pelo Instituto de Pesquisas EnergĆ©ticas E Nucleares (1991) e Doutorado em Tecnologia Nuclear pelo Instituto de Pesquisas EnergĆ©ticas E Nucleares (2006). Atualmente Ć© pesquisador da ComissĆ£o Nacional de Energia Nuclear. ExperiĆŖncia em quĆ­mica analĆ­tica, atuando principalmente nos seguintes temas: avaliaĆ§Ć£o ambiental, metais, quĆ­mica ambiental, qualidade da Ć”gua e quĆ­mica analĆ­tica, caracterizaĆ§Ć£o de compostos de urĆ¢nio e quĆ­mica analĆ­tica instrumental. (Texto extraĆ­do do CurrĆ­culo Lattes em 17 nov. 2021)

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 1 de 1
  • Artigo IPEN-doc 29839
    Exploring the acid neutralizing effect in rainwater collected at a tropical urban area
    2023 - ESQUIVEL-HERNANDEZ, GERMAIN; SANCHEZ-MURILLO, RICARDO; VILLALOBOS-CORDOBA, DIEGO; MONTEIRO, LUCILENA R.; VILLALOBOS-FORBES, MARIO; SANCHEZ-GUTIERREZ, ROLANDO; COTRIM, MARYCEL E.B.; MATIATOS, IOANNIS
    We report on the chemical and the carbon isotopic composition of dissolved inorganic carbon (DIC) of rainwater collected between May and October 2020 in the Central Valley, Costa Rica. Precipitation samples were collected daily (N = 55) and analyzed for major ions, DIC, and Ī“13CDIC. Significant correlation (p < 0.05) between main acidic (SO4 2āˆ’ and NO3 āˆ’ ) and major alkaline (Ca2+ and NH4 +) species confirmed a very effective acid neutralization effect in rainwater (average pH: 5.90 Ā± 0.74). Significant temporal variations (p < 0.05) of Ī“13CDIC indicated the contribution of carbonate salts in rainwater from May to October but also CO2 dissolution at the beginning of the wet season (May), probably due to increased CO2 emissions from soil degassing. Temporal changes of Ca2+ neutralization factors followed the observed changes in Ī“13CDIC, which confirmed the high buffer capacity of precipitation in our study. HYSPLIT analysis also revealed long-range contributions of pedogenetic carbonates (e. g., Saharan dust) responsible for the acid neutralization capacity of rainwater (e.g., from July to September). Principal component analysis showed that four main factors explain 65% of the variance are: i) acid neutralization processes (Ca2+ neutralization factor), ii) marine salts (Clāˆ’ , Na+), iii) fossil fuels (SO4 2āˆ’ , NO3 āˆ’ ), and iv) agriculture/fertilizers (NO3 āˆ’ , NH4 +, K+). Our study demonstrated that a combined approach of chemical, isotope, and statistical analysis techniques can help unravel the mechanism of acid neutralization of rainwater in tropical urban areas. This information has strong implications for future studies related with the impact of acid deposition on ecosystem functioning, water quality, and infrastructure degradation.