KELME CARDOSO DAMASCENO

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 7 de 7
  • Artigo IPEN-doc 27385
    Species-specific in vitro and in vivo evaluation of toxicity of silver nanoparticles stabilized with gum arabic protein
    2020 - MAZIERO, JOANA S.; THIPE, VELAPHI C.; ROGERO, SIZUE O.; CAVALCANTE, ADRIANA K.; DAMASCENO, KELME C.; ORMENIO, MATHEUS B.; MARTINI, GISELA A.; BATISTA, JORGE G.S.; VIVEIROS, WILLIAM; KATTI, KAVITA K.; KARIKACHERY, ALICE R.; MOHANDOSS, DARSHAKUMAR D.; DHURVAS, RASHMI D.; NAPPINNAI, MOHANAVELU; ROGERO, JOSE R.; LUGAO, ADEMAR B.; KATTI, KATTESH V.
    Introduction: We report, herein, in vitro, and in vivo toxicity evaluation of silver nanoparticles stabilized with gum arabic protein (AgNP-GP) in Daphnia similis, Danio rerio embryos and in Sprague Dawley rats. Purpose: The objective of this investigation was to evaluate in vitro and in vivo toxicity of silver nanoparticles stabilized with gum arabic protein (AgNP-GP), in multispecies due to the recognition that toxicity evaluations beyond a single species reflect the environmental realism. In the present study, AgNP-GP was synthesized through the reduction of silver salt using the tri-alanine-phosphine peptide (commonly referred to as “Katti Peptide”) and stabilized using gum arabic protein. Methods: In vitro cytotoxicity tests were performed according to ISO 10993– 5 protocols to assess cytotoxicity index (IC50) values. Acute ecotoxicity (EC50) studies were performed using Daphnia similis, according to the ABNT NBR 15088 protocols. In vivo toxicity also included evaluation of acute embryotoxicity using Danio rerio (zebrafish) embryos following the OECD No. 236 guidelines. We also used Sprague Dawley rats to assess the toxicity of AgNP-GP in doses from 2.5 to 10.0 mg kg− 1 body weight. Results: AgNP-GP nanoparticles were characterized through UV (405 nm), core size (20± 5 nm through TEM), hydrodynamic size (70– 80 nm), Zeta (ζ) potential (- 26 mV) using DLS and Powder X ray diffraction (PXRD) and EDS. PXRD showed pattern consistent with the Ag (1 1 1) peak. EC50 in Daphnia similis was 4.40 (3.59– 5.40) μg L− 1. In the zebrafish species, LC50 was 177 μg L− 1. Oral administration of AgNP-GP in Sprague Dawley rats for a period of 28 days revealed no adverse effects in doses of up to 10.0 mg kg− 1 b.w. in both male and female animals. Conclusion: The non-toxicity of AgNP-GP in rats offers a myriad of applications of AgNP-GP in health and hygiene for use as antibiotics, antimicrobial and antifungal agents.
  • Artigo IPEN-doc 27321
    Avaliação da toxicidade de nanopartículas de prata estabilizadas com goma arábica
    2019 - MAZIERO, J.S.; ROGERO, S.O.; DAMASCENO, K.C.; ORMENIO, M.B.; CAVALCANTE, A.K.; MARTINI, G.A.; BATISTA, J.G.S.; KATTI, K.V.; LUGAO, A.B.; ROGERO, J.R.
    As nanopartículas de prata (NPAg), devido a seus diversos atributos (formato variado, elevada área superficial e alto poder bactericida), vem sendo amplamente utilizadas em diversos setores da indústria. Esta utilização abrangente, tem provocado grande preocupação, quanto aos impactos e riscos potenciais que as NPAg podem causar ao meio ambiente e à saúde humana. Este trabalho teve como objetivo verificar a toxicidade de uma amostra de NPAg estabilizada com Goma Arábica e reduzida com Tri-Alanina, utilizando ensaios in vitro e in vivo. O teste in vitro de citotoxicidade, foi realizado seguindo a norma ISO 10993 - 5, em células da linhagem NCTC-L929; os ensaios in vivo de ecotoxicidade aguda, de acordo com a norma brasileira ABNT NBR 12713, utilizando como organismo teste a Daphnia similis; e embriotoxicidade aguda de acordo com o protocolo da OECD 236, utilizando como organismo teste o Danio rerio. Os resultados obtidos foram: IC50 de 2,61 mg L-1, CE50 de 6,55 μg L-1 e CL50 de 673 μg L-1. Os organismos aquáticos apresentaram maior sensibilidade às NPAg do que as células em cultura, elevando a importância de se realizar mais estudos em várias espécies de interesse biológico. Além disso, mostra-se necessário verificar o descarte apropriado dessas nanopartículas, visto que no Brasil ainda não há legislações que quantifiquem os limites permissíveis para esse descarte.
  • Resumo IPEN-doc 25921
    In vitro and in vivo toxicity evaluation of silver nanoparticles stabilized with gum arabic
    2018 - MAZIERO, J.S.; CAVALCANTE, A.K.; MARTINI, G.A.; DAMASCENO, K.C.; ORMENIO, M.B.; CAVALCANTE, B.K.; ROGERO, S.O.; ROGERO, J.R.; LUGAO, A.B.
    Due to its properties such as size, varied shape, high surface area and high bactericidal properties, silver nanoparticles (AgNP) have been widely used in several sectors of the industry: bandages; inside food coolers, to retard spoilage; in antimicrobial insoles, to prevent odors; in air purifiers; in surgical instruments and etc [1] [2]. Considering the range of applications a great concern in the academic field, mainly ecotoxicological, as the potential impacts and risks that AgNP can cause to the environment and human health has increased. During the synthesis of AgNP it is necessary to use stabilizing agents such as gum arabic (GA), which is an exudate of dried gum, edible, from the stems and branches of Acacia senegal and A. seyal, rich in soluble fiber not viscous. GA has broad industrial use as stabilizer, thickening agent and emulsifier [3]. Based on these considerations, this work aimed to verify and compare the toxicity level of two GA-stabilized AgNP samples (Sample 1: AgNP at 147 ppm concentration, approximately 25 nm in size; and Sample 2: AgNP at concentration of 174 ppm with approximate size of 75 nm) using in vitro and in vivo assays. The in vitro cytotoxicity test was performed according to ISO 10993-5 by the neutral red uptake method in cells of the NCTC-L929 line, to obtain the IC50 (cytotoxicity index, which is the concentration of the substance causing it 50% mortality of exposed cells); and the in vivo acute ecotoxicity assay, according to the Brazilian standard ABNT NBR 12713, using Daphnia similis as the test organism to obtain EC50 (effective concentration that causes immobility in 50% of exposed organisms). The results obtained for Sample 1 were IC50 of 2.57 mg L-1 and EC50 of 4.40 μg L-1; and Sample 2: IC50 of 2.61 mg L-1 and EC50 of 6.55 μg L-1. These results demonstrated that aquatic organisms are much more sensitive to AgNP than cells in culture, raising the importance of conducting further studies related to the adversities that these nanoparticles can cause to the environment and human health. In addition, it is necessary to verify the disposal of the same in the environment, since in Brazil there are still no legislation that quantifies the permissible limits for this disposal.
  • Resumo IPEN-doc 25916
    Evaluation of the toxicity of gold nanoparticles produced by green nanotechnology in Zebrafish (Danio rerio)
    2018 - CAVALCANTE, A.K.; BATISTA, J.G.S.; MAZIERO, J.S.; DAMASCENO, K.C.; ORMENIO, M.B.; CAVALCANTE, B.K.; ROGERO, S.O.; ROGERO, J.R.; LUGAO, A.B.
    Gold nanoparticles (AuNPs) of different sizes and shapes have been extensively studied by researchers and laboratories around the world. Several studies have demonstrated the applicability of gold nanoparticles in the treatment and diagnosis of cancer, in the treatment of chronic inflammation, infections, degenerative diseases and autoimmune diseases [1]. The synthesis of AuNPs generally involves reducing agents which present problems related to toxicity. In order to address this issue, metabolites present in various plant extracts have been exploited for the preparation of different nanoparticles. The methods that use phytochemicals to reduce metal ions provide a green approach to nanotechnology, known as green nanotechnology [2]. Researchers have shown that some phytochemicals, such as mangiferin (MGF) and epigallocatechin-gallate (EGCG), in addition to reducing and stabilizing the gold nanoparticles, are able to functionalize them. These molecules have chemical groups that allow binding to overexpressed receptors on some types of tumor cells [3]. The objective of this study was to evaluate the level of toxicity of the gold nanoparticles, reduced and stabilized with epigallocatechin-gallate (EGCG-AuNPs) in Zebrafish embryos (Danio rerio), as an indication of a possible environmental effect. To assess the developmental impact of embryos, organisms were exposed to different dilutions of the EGCG-AuNPs suspension for a 96-hour period according to OECD Protocol 236 (Fish Embryo Acute Toxicity Test-FET). Zebrafish is an established vertebrate model for the study of development, disease and is being increasingly used for both pre-clinical studies and toxicological applications due to a range of favorable traits [4]. EGCG-AuNPs demonstrated toxicity, with organ lethality being less than 33% at all concentrations used. The work provided a contribution on the toxicity of AuNPs synthesized and stabilized with the epigallocatechin-gallate reducing agent and using Zebrafish embryos as an animal.
  • Artigo IPEN-doc 25728
    In vitro and in vivo toxicity of coal fly Ash Lechatee
    2018 - DAMASCENO, K.C.; CAVALCANTE, A.K.; MAZIERO, J.S.; MARTINI, G.A.; ORMENIO, M.B.; MAMEDE, F.C.; MIRANDA, C.S.; CAMPELLO, F.A.; IZIDORO, J.C.; ROGERO, S.O.; FUNGARO, D.A.; LOPES-FERREIRA, M.; ROGERO, J.R.
    Coal Fly ash is a major solid waste from coal-fired power stations. In Brazil, more than 4 million tons per year of fly ash are generated and only 30% is applied as raw material for cement and concrete production. The remaining is disposed in on-site ponds, nearby abandoned or active mine sites and landfills. The inadequate disposal of fly ash may pose a significant risk to the environment due to the possible leaching of hazardous pollutants into the surrounding soil and groundwater. A combination of leaching tests, cytotoxicity and ecotoxicological assays were used in this studyin order toevaluate the possible adverse effects of coal fl y ash in non-target organisms. The sample was collected from coal-fi red power plant located in Southern Brazil and the coal fly ash was submitted to a leaching procedure using USEPA SW 864 Method 1311. The leachate was prepared in six dilutions: 1.56%, 3.12%, 6.25%, 12.5%, 25% and 50%. Acute toxicity tests were performed on NCTC clone 929 (CCIAL-020) culture cells by neutral red uptake cytotoxicity method; acute ecotoxicity usingDaphnia similisand Danio rerio embryos according to ABNT NBR 12713 and OECD 236, respectively were employed. The cytotoxicity index (CI50) obtained was 33%; the EC50of D. similis after 48 h of exposure to the leachate was 7.25% and the LC50of D. rerio after 96 h of exposure was 4.39%. The results of these bioassays indicated toxicity of the coal fly ash leachate toward exposed organisms.
  • Artigo IPEN-doc 24145
    Resveratrol radiomodifier effect on Danio rerio embriolarval assay
    2017 - DAMASCENO, KELME C.; MAMEDE, FERNANDA C.S.; CAVALCANTE, ADRIANA K.; ROGERO, SIZUE O.; FERREIRA, MONICA L.; ROGERO, JOSE R.
    The ionizing radiation can cause fatal damages to cells by the direct interaction with DNA and RNA or a series of toxic reactions occasioning chemical and biological changes. There are compounds with radioprotective potential, like resveratrol. For use the organism. Resveratrol is a substance found in peanuts, grapes and wine and its production occurs in plants as a response to physical, chemical and biological stress. Some studies benefits. Danio rerio (zebrafish) is a vertebrate animal and has become the model of several studies related to human diseases, due to its genomes similarity of 70 %, rapid embryonic development and the transparency o the eggs, which make it possible to observe the effects during the test period. The aim of the present study to verify the resveratrol radiomodifier effect on zebrafish during the embryolarval development by modified Fish Embryo Acute Toxicity (FET) (LC50) was 66.9 mg.L-1. Before, to understand the effects of radiation, was carried out the gamma radiation lethal dose (LD50) assay and the LD50 was 25 Gy. With these results the projec study of the radiomodifier effect of resveratrol in the presence of gamma radiation
  • Resumo IPEN-doc 23320
    Ecotoxicity evaluation of Coal Fly ash to Daphnia similis and Danio rerio
    2017 - CAVALCANTE, A.K.; DAMASCENO, K.C.; MAZIERO, J.S.; MARTINI, G.A.; ORMENIO, M.B.; MAMEDE, F.C.S.; MIRANDA, C.S.; IZIDORO, J.C.; CAMPELLO, F.A.; FUNGARO, D.A.; ROGERO, S.O.; ROGERO, J.R.
    Coal Fly ash is a major solid waste from coal-fired power stations. In Brazil, more than 4 million tons per year of fly ash are generated with a tendency to increase every year. Only 30% of fly ash is applied as raw material for cement and concrete production. The remaining is disposed in onsite ponds, nearby abandoned or active mine sites, or landfills. The inadequate disposal of fly ash may pose a significant risk to the environment due to the possible leaching of hazardous pollutants into the surrounding soil and groundwater. A combination of leaching tests and ecotoxicological analyses were used in this work for the evaluation of the adverse effects of coal fly in non-target organisms. Ashes were collected from coal-fired power plant located in South of Brazil. Acute toxicity tests were performed with Danio rerio embryos and Daphnia similis, according to OECD 236 and ABNT NBR 12713, respectively. Coal fly ash sample was subjected to a leaching procedure using USEPA SW 864 Method 1311. The leachate was prepared in seven dilutions: 1.56%, 3.12%, 6.25%, 12.5%, 25%, 50%, and 100%. The assays were performed in triplicates and the results showed lethality of Danio rerio after 96 hours of exposure to the leachate, and the calculated LC50 was 4.39%. The ecotoxicity tests with Daphnia similis, observed immobility after 48 hours of exposure to the leachate, and EC50 calculated was 7.25%. The results of these tests indicate toxicity of the coal fly ash leachate toward exposed organisms.