CARLOS ROBERTO JORGE SOARES

Resumo

Graduado em Farmácia e Bioquímica pela Universidade de São Paulo (1989), realizou Mestrado (1995) e Doutorado (2000) em Tecnologia Nuclear - Aplicações pela Universidade de São Paulo. Atualmente é pesquisador do Instituto de Pesquisas Energéticas (IPEN-CNEN/SP) e professor de pós-graduação vinculado à Universidade de São Paulo. Com experiência em biotecnologia na expressão de proteínas recombinantes por bactéria e por células de mamífero. Atua principalmente no seguinte tema: síntese, purificação, caracterização e aplicações de hormônios recombinantes. Atualmente é Gerente do Centro de Biotecnologia do IPEN. (Texto extraído do Currículo Lattes em 08 out. 2021)

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Artigo IPEN-doc 25046
    High production and optimization of the method for obtaining pure recombinant human prolactin
    2018 - AFFONSO, REGINA; SOARES, CARLOS R.; RIBELA, MARIA T.; BARTOLINI, PAOLO
    Prolactin is a pituitary hormone that is involved diverse physiological functions, such as lactation, reproduction, metabolism, osmoregulation, immunoregulation, and behavior. Its level of glycosylation is low in vivo, which favors its expression in bacterial systems. In the present work recombinant human prolactin (rec-hPRL) was expressed from the p1813-hPRL vector in Escherichia coli strain in inclusion bodies with 530.67 mg of rec-hPRL per liter of induced bacterial culture. The solubilization and renaturation of rec-hPRL followed by two methods described in the literature for this protein: one with detergent and basic pH, and other urea and dialyses was done by studying. The protocol with detergent/basic pH was not successful, whereas protocol with urea/dialyses was obtained pure protein and this was optimized. Rec-hPRL was obtained in a soluble, pure and active form, when the sample was 8-fold concentrated in the solubilization phase, allowing 33% recovery, 3-fold more that the original method. The pure protein was obtained with 38.37 i. u./mg activity, which is three times greater than that of the PRL standard from the WHO. In conclusion, this work obtained the highest production of rechPRL, and concentrating the sample eight times in the solubilization stage was decisive for obtaining a highly concentrated, active protein for future work.
  • Artigo IPEN-doc 22999
    Expression, purification and characterization of the authentic form of human growth hormone receptor antagonist G120R-hGH obtained in Escherichia coli periplasmic space
    2017 - MENEZES, ANA C.S.C.; SUZUKI, MIRIAM F.; OLIVEIRA, JOAO E.; RIBELA, MARIA T.C.P.; FURIGO, ISADORA C.; DONATO JUNIOR, JOSE; BARTOLINI, PAOLO; SOARES, CARLOS R.J.
    The human growth hormone receptor antagonist G120R-hGH precludes dimerization of GH and prolactin receptors and consequently JAK/STAT signaling. Some modifications in this antagonist resulted in a drug specific for the GH receptor, called Pegvisomant (Somavert®). However, the original G120R-hGH is usually synthesized in bacterial cytoplasm as inclusion bodies, not being a commercial product. The present work describes the synthesis and characterization of G120R-hGH secreted into bacterial periplasm and obtained with a vector based on a constitutive lambda-PL promoter. This antagonist can be useful for studies aiming at investigating the effects of a simultaneous inhibition of GH and prolactin signaling, as a potential anti-tumoral or anti-diabetic compound. G120R-hGH, synthesized using the W3110 E. coli strain, showed a yield of 1.34 ± 0.24 mg/ml/A600 (~0.79 mg G120R-hGH/g of wet weight cells) after cultivation at 30 C up to 3 A600 units and induction at 37 C, for 6 h, with final 4.3 ± 0.3 A600. A laboratory scale purification was carried out using three chromatographic steps with a total yield of 32%, reaching 98% purity. The obtained protein was characterized by SDS-PAGE, Western Blotting, Mass spectrometry, RP-HPLC, HPSEC and in vitro proliferation bioassay. The proliferation assay, based on Ba/F3- LLP cells, shows that G120R-hGH (100 ng/ml) significantly inhibited (64%) the proliferative action of hGH (1 ng/ml). This is the first time that G120R-hGH is synthesized in bacterial periplasmic space and therefore correctly folded, without the initial methionine. The reasons for a divergent efficacy for antagonizing hGH versus hPRL is currently unknown and deserves further investigation.