JOAO VICTOR DE SOUSA ARAUJO

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 6 de 6
  • Artigo IPEN-doc 29079
    A cerium-based nanocoating for corrosion protection of the AA1230 as clad material for the AA2024-T3 alloy
    2022 - KLUMPP, RAFAEL E.; ARAUJO, JOAO V. de S.; ANTUNES, RENATO A.; VIVEIROS, BARBARA V.G. de; MAGNANI, MARINA; COSTA, ISOLDA
    Aluminum alloys are the state-of-art materials for structural components of aircrafts. As they are susceptible to localized corrosion, this kind of damage can become a major threat for its safe use in aircraft components. Therefore, surface protection of aluminum alloys against corrosion is a core issue in these applications. In this work, an alternative eco-friendly cerium-based surface pretreatment was developed and applied on the AA1230 clad of the AA2024-T3 alloy for corrosion protection. The corrosion resistance evaluation of this modified surface was evaluated by several techniques. The results were compared to chromium based conventional treatments and revealed that the coating layer, composed of spherical nodular nanostructures of cerium, obtained with the proposed eco-friendly treatment, improved the corrosion resistance of the alloy. Moreover, it was comparable to the corrosion behavior of chromate-treated alloy, showing that this treatment is a promising alternative to replace chromate based surface treatments.
  • Artigo IPEN-doc 27812
    How microstructure affects localized corrosion resistance of stir zone of the AA2198-T8 alloy after friction stir welding
    2021 - MACHADO, CARULINE de S.C.; DONATUS, UYIME; MILAGRE, MARIANA X.; ARAUJO, JOAO V. de S.; VIVEIROS, BARBARA V.G. de; KLUMPP, RAFAEL E.; PEREIRA, VICTOR F.; COSTA, ISOLDA
    In this study, the microstructure and corrosion resistance of the stir zone (SZ) of the AA2198-T8 Al-Cu-Li alloy welded by friction stir welding (FSW) were investigated by microscopy, immersion tests and electrochemical techniques such as measurements of open circuit potential variation with time, and scanning vibrating electrode technique (SVET) measurements. A low chloride-containing solution (0.005 mol L−1 NaCl) was employed in the corrosion studies and severe localized corrosion (SLC) was observed in the SZ related to intergranular attack. The results were compared to those of the non-affected areas by FSW, also known as base metal (BM). In the BM, SLC was found and the type of attack related to it was intragranular. In both zones, BM and SZ, SLC was due to precipitates of high electrochemical activity, specifically T1 (Al2CuLi) phase in the BM, whereas TB (Al7Cu4Li) / T2 (Al6CuLi3) in the SZ. Scanning vibrating electrode technique (SVET) analysis was very useful in the study of SLC in the AA2198-T8 alloy showing the development of high anodic current densities at the mouth of the SLC sites.
  • Artigo IPEN-doc 27712
    Corrosion protection of the AA2198-T8 alloy by environmentally friendly organic-inorganic sol-gel coating based on bis-1,2-(triethoxysilyl) ethane
    2021 - KLUMPP, RAFAEL E.; DONATUS, UYIME; SILVA, REJANE M.P. da; ANTUNES, RENATO A.; MACHADO, CARULINE de S.C.; MILAGRE, MARIANA X.; ARAUJO, JOAO V. de S.; VIVEIROS, BARBARA V.G. de; COSTA, ISOLDA
    In this work, a surface coating composed of organic‐inorganic hybrid sol‐gel based on bis‐1,2‐(triethoxysilyl) (BTSE) ethane was applied on AA2198‐T8 samples, and its effect on corrosion resistance was investigated and compared with that of a chromate layer formed in a solution with hexavalent chromium ions. The corrosion resistance of BTSE coated samples was evaluated by immersion tests in sodium chloride solution (0.005 mol/L NaCl) and monitored by global electrochemical techniques such as electrochemical impedance spectroscopy (EIS) and local electrochemical techniques such as scanning vibrating electrode technique (SVET) and scanning electrochemical microscopy (SECM). The formed coating layers were characterized by X‐ray photoelectron spectroscopy (XPS). The results pointed out that the BTSE is an effective alternative coating for corrosion protection of new generation Al‐Cu‐Li alloys and could replace chromates obtained in toxic and carcinogenic CrVI containing solutions leading to improved corrosion protection.
  • Artigo IPEN-doc 26885
    The effect of acid pickling on the corrosion behavior of a cerium conversion-coated AA2198-T851 Al-Cu-Li alloy
    2020 - KLUMPP, RAFAEL E.; DONATUS, UYIME; ARAUJO, JOAO V.S.; REDÍGOLO, MARCELO M.; MACHADO, CARULINE de S.C.; COSTA, ISOLDA
    The effect of acid pickling pretreatments prior to cerium conversion coating process on the corrosion behavior of AA2198-T851 alloy substrates was investigated. Three acid pretreatments were employed: nitric acid (HNO3), phosphoric acid (H3PO4) and sulfuric acid (H2SO4). The cerium conversion coating process was performed using a batch solution composed of cerium nitrate and hydrogen peroxide. Microscopic techniques, electrochemical impedance spectroscopy, polarization resistance and open-circuit potential measurements were employed to investigate the effect of each acid pretreatment. The untreated and nitric acid pretreated substrates presented more defective cerium conversion layers than the substrates treated with phosphoric and sulfuric acids. Accordingly, the corrosion resistance of the untreated and nitric acid-treated substrates was very low, while that of the substrates treated with phosphoric acid and sulfuric acids were greatly improved. The sulfuric acid pickling treatment was the best pretreatment before cerium conversion coating among the investigated pretreatments on the AA2198-T851 Al-Cu-Li alloy.
  • Artigo IPEN-doc 26650
    Correlating the modes of corrosion with microstructure in the friction stir welded AA2198-T8 alloy in aqueous hydrogen peroxide-chloride medium
    2019 - MACHADO, CARULINE de S.C.; DONATUS, UYIME; MILAGRE, MARIANA X.; MOGILI, NAGA V.V.; GIORJÃO, RAFAEL A.R.; KLUMPP, RAFAEL E.; ARAUJO, JOAO V. de S.; FERREIRA, RAPHAEL O.; COSTA, ISOLDA
    In this study, different types of localized corrosion in the friction stir welding (FSW) zones of an AA2198-T8 when the alloy is subjected to a corrosion test in a hydrogen peroxide–chloride solution (according to ASTM G110 standard) has been investigated. The corrosion modes were correlated with microstructure, especially with respect to the T1 phase and coarse Al-Cu-Fe phase distribution across the weldment. Simulated thermal profile and microhardness measurements were used to establish the variations in T1 phase distribution. Two types of corrosion were observed in the FSW zones: intense pitting and intergranular corrosion—type I; and the formation of cavities and trenches—type II. Type I is associated with the T1 phase while type II is associated with Al-Cu-Fe coarse intermetallics. Both types were found on the base metal (BM) and heat affected zone, but the type I reduced in the latter toward the stir zone (SZ). The SZ/thermomechanically affected zone (TMAZ) exhibited only type II. Also, Cu enrichment was observed around the type II sites in the SZ/TMAZ. Furthermore, an inverse correlation between microhardness and corrosion resistance which was related to T1 phase concentration in the different zones was also observed. Moreover, the SZ and BM were isolated and evaluated by an immersion test and electrochemical analysis using the ASTM G110 test solution. The results indicated galvanic coupling effects, as the SZ was strongly attacked when exposed separately compared to when it was coupled with the other zones.
  • Artigo IPEN-doc 25861
    Effect of surface treatments on the localized corrosion resistance of the AA2198‐T8 aluminum lithium alloy welded by FSW process
    2019 - MACHADO, CARULINE de S.C.; KLUMPP, RAFAEL E.; AYUSSO, VICTOR H.; DONATUS, UYIME; MILAGRE, MARIANA X.; ARAUJO, JOAO V. de S.; MACHADO, GLAUSON A.F.; COSTA, ISOLDA
    In this work, the effect of eight types of surface treatments on the corrosion resistance of friction stir welded samples of an AA2198‐T8 Al‐Cu‐Li alloy were tested and compared in an attempt to find suitable alternatives to toxic and carcinogenic hexavalent chromium treatments. All the samples were anodized and subjected to different post‐anodizing treatments. The post‐anodizing treatments were (1) hydrothermal treatment in Ce (NO3)3 6H2O solution; (2) hydrothermal treatment in Ce (NO3)3 6H2O solution with H2O2; (3) hydrothermal treatment in boiling water; (4) hexavalent chromium conversion coating; and (5) immersion in BTSE (bis‐1,2‐(triethoxysilyl) ethane. The corrosion resistance of the treated samples was evaluated by immersion tests in sodium chloride solution (0.1 mol L−1 NaCl) and electrochemical impedance spectroscopy (EIS) of the friction stir weldment. The results showed that among the alternative treatments, the Ce‐containing solutions presented the best corrosion resistance, especially when used without peroxide.