JOAO VICTOR DE SOUSA ARAUJO

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 9 de 9
  • Artigo IPEN-doc 28933
    Corrosion behaviour of the 2098-T351 Al–Cu–Li alloy after different surface treatments
    2022 - BARBOZA, WANESSA das G.; MILAGRE, MARIANA X.; DONATUS, UYIME; MACHADO, CARULINE de S.C.; RAMIREZ, OSCAR M.P.; ARAUJO, JOAO V. de S.; SILVA, REJANE M.P. da; COSTA, ISOLDA
    The effect of different surface treatments on the corrosion resistance of the AA2098 Al–Cu–Li alloy has been investigated. Surface characterization was performed using 3D optical profilometry, energy dispersive X-ray spectroscopy and scanning electron microscopy. The corrosion resistance of the 2098 alloy after the surface treatments was investigated in 0.1 mol L−1 NaCl solution by electrochemical techniques and microscopy. Corrosion results showed that the untreated and the chemically etched surfaces were more active than the mechanically abraded and mechanically polished surfaces owing to differences in the nature of the native oxides formed after the surface treatments. Corrosion rate and mode were also affected by how close the exposed surface was to the mid-thickness region of the AA2098-T351 plate relative to the actual top surface (before polishing). This is associated with the variation in the volume fraction and distribution of the T1 phase as the mid-thickness region of the AA2098-T351 plate is approached.
  • Artigo IPEN-doc 28531
    Influence of chloride ions concentration on the development of severe localised corrosion and its effects on the electrochemical response of the 2198-T8 alloy
    2021 - MACHADO, CARULINE de S.C.; SILVA, REJANE M.P. da; ARAUJO, JOAO V. de S.; MILAGRE, MARIANA X.; DONATUS, UYIME; VIVEIROS, BARBARA V.G. de; KLUMPP, RAFAEL E.; COSTA, ISOLDA
    The development of severe localised corrosion (SLC) on the 2198-T8 alloy was investigated in solutions of various NaCl concentrations (0.001, 0.005 and 0.01 mol L−1). Immersion tests, optical profilometry, conventional and local electrochemical analyses were performed to evaluate the corrosion behaviour of the alloy. Immersion tests showed that the alloy is susceptible to SLC in all conditions, although the pits sizes were dependent on the solution concentration. The largest anodic areas, corresponding to SLC sites, were observed for the sample immersed in 0.001 mol L−1 NaCl, whereas pits with similar sizes were observed for the samples immersed in solutions with 0.005 and 0.01 mol L−1 of NaCl. Moreover, the maximum depth of attack was observed for the sample immersed in 0.001 mol L−1 NaCl. These results were in agreement with the scanning ionselective electrode technique (SIET) maps which showed stronger acidification on the sample exposed to 0.001 mol L−1 NaCl solution.
  • Artigo IPEN-doc 27712
    Corrosion protection of the AA2198-T8 alloy by environmentally friendly organic-inorganic sol-gel coating based on bis-1,2-(triethoxysilyl) ethane
    2021 - KLUMPP, RAFAEL E.; DONATUS, UYIME; SILVA, REJANE M.P. da; ANTUNES, RENATO A.; MACHADO, CARULINE de S.C.; MILAGRE, MARIANA X.; ARAUJO, JOAO V. de S.; VIVEIROS, BARBARA V.G. de; COSTA, ISOLDA
    In this work, a surface coating composed of organic‐inorganic hybrid sol‐gel based on bis‐1,2‐(triethoxysilyl) (BTSE) ethane was applied on AA2198‐T8 samples, and its effect on corrosion resistance was investigated and compared with that of a chromate layer formed in a solution with hexavalent chromium ions. The corrosion resistance of BTSE coated samples was evaluated by immersion tests in sodium chloride solution (0.005 mol/L NaCl) and monitored by global electrochemical techniques such as electrochemical impedance spectroscopy (EIS) and local electrochemical techniques such as scanning vibrating electrode technique (SVET) and scanning electrochemical microscopy (SECM). The formed coating layers were characterized by X‐ray photoelectron spectroscopy (XPS). The results pointed out that the BTSE is an effective alternative coating for corrosion protection of new generation Al‐Cu‐Li alloys and could replace chromates obtained in toxic and carcinogenic CrVI containing solutions leading to improved corrosion protection.
  • Artigo IPEN-doc 27402
    Microstructural, electrochemical and localized corrosion characterization of the AA2198-T851 alloy
    2020 - ARAUJO, JOAO V. de S.; SILVA, REJANE M.P. da; DONATUS, UYIME; MACHADO, CARULINE de S.C.; COSTA, ISOLDA
    In the present work, the microstructure, electrochemical behavior and localized corrosion of the AA2198-T851 Al-Cu-Li alloy were studied. The microstructure was correlated with corrosion results obtained by immersion, gel visualization and scanning electrochemical microscopy (SECM) tests. Immersion and gel visualization tests showed high kinetics of corrosion attack during the first hours of immersion. SECM analyzes by means of surface generation/tip collection (SG/TC) mode detected hydrogen evolution generated during spontaneous corrosion from severe localized corrosion (SLC) sites on the metal surface. SECM results revealed sites of intense hydrogen evolution after 2 h of immersion and increased amounts of corrosion products after 4 h of immersion. Hydrogen evolution sites detected by SECM were associated with severe localized corrosion (SLC).
  • Artigo IPEN-doc 27178
    Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding
    2020 - MILAGRE, MARIANA X.; DONATUS, UYIME; MOGILI, NAGA V.; SILVA, REJANE M.P.; VIVEIROS, BARBARA V.G. de; PEREIRA, VICTOR F.; ANTUNES, RENATO A.; MACHADO, CARULINE S.C.; ARAUJO, JOAO V.S.; COSTA, ISOLDA
    Scanning electrochemical microscopy (SECM) and scanning vibrating electrode technique (SVET) were used to investigate the electrochemical behaviour of the top surface of the 2098-T351 alloy welded by friction stir welding (FSW). The SVET technique was efficient in identifying the cathodic and anodic weld regions. The welding joint (WJ), which comprises the thermomechanically affected zone (TMAZ) and the stir zone (SZ), was cathodic relative to the heated affected zone (HAZ) and the base metal (BM). The reactivities of the welding joint at the advancing side (AS) and the retreating side (RS) were analyzed and compared using SECM technique in the competition mode by monitoring the dissolved oxygen as a redox mediator in 0.005 mol L−1 NaCl solution. The RS was more electrochemically active than the AS, and these results were correlated with the microstructural features of the welded alloy.
  • Artigo IPEN-doc 26823
    Effects of chloride ion concentration on the corrosion behavior of the AA2198-T8 alloy
    2019 - MACHADO, CARULINE de S.C.; SILVA, REJANE M. da; ARAUJO, JOAO V. de S.; DONATUS, UYIME; MILAGRE, MARIANA X.; KLUMPP, RAFAEL E.; ROSSI, JESUALDO L.; COSTA, ISOLDA
    In this work, the influence of chloride ions concentration on the corrosion behavior of the AA2198-T8 alloy was evaluated. Immersion test and electrochemical analyses were performed in sodium chloride solutions of three concentrations, 0.001 mol L-1, 0.005 mol L-1 and 0.01 mol L-1. The results showed that the AA2198-T8 alloy was susceptible to localized corrosion (LC) and to severe localized corrosion (SLC) in all conditions investigated. The electrochemical results obtained by open circuit potential measurements, cyclic voltammetry and potentiodynamic polarization curves were associated with the corroded microstructure of the alloy. Although electrochemical techniques allowed differentiating the corrosion resistance as a function of chloride concentration, the result was strongly influenced by the corroded/uncorroded area ratio related to the SLC.
  • Artigo IPEN-doc 26644
    Macro and microgalvanic interactions in friction stir weldment of AA2198-T851 alloy
    2019 - DONATUS, UYIME; SILVA, REJANE M.P. da; ARAUJO, JOAO V. de S.; MILAGRE, MARIANA X.; ABREU, CAIO P. de; MACHADO, CARULINE de S.C.; COSTA, ISOLDA
    The galvanic interactions within and between the friction stir weld zones of the AA2198-T851alloy have been investigated using electrochemical and microscopy techniques. The parentmaterial (PM) was the most anodic region and exhibited pronounced severe localized corro-sion (SLC) both when coupled and isolated. The stir zone was the most resistant to corrosionand exhibited no SLC when coupled, but exhibited SLC when isolated. Profiles associatedwith dissolved oxygen consumption and hydrogen generation currents across the weldmentwere inversely related because the anodic (PM) region produced higher hydrogen bubblesand, interestingly, consumed more dissolved oxygen compared with the other regions.
  • Artigo IPEN-doc 26643
    Exfoliation corrosion susceptibility in the zones of friction stir welded AA2098-T351
    2019 - MILAGRE, MARIANA X.; DONATUS, UYIME; MACHADO, CARULINE S.C.; ARAUJO, JOAO V.S.; FERREIRA, RAPHAEL O.; SILVA, REJANE M.P.; ANTUNES, RENATO A.; COSTA, ISOLDA
    In the present study, the exfoliation susceptibility of the weld zones in friction stir weldedAA2098-T351 was compared with that of the base metal (BM) according to ASTM G34 stan-dard practice. Friction stir welding (FSW) had a significant effect on the microstructure of theAl alloy tested and the susceptibility to exfoliation was strongly affected by the microstruc-ture. Different features of corrosion attack and exfoliation susceptibility were observed whenthe zones affected by FSW were tested isolated or coupled. Also, the near-surface deformedlayer had an important effect on the Al alloy susceptibility to exfoliation. These are themain findings of this work. The corrosion features were correlated with the microstructuralmodifications related to the welding process and with the electrochemical response. TheT1 phase morphology, distribution and size were critical for exfoliation susceptibility. Thestir zone (SZ) was the zone most resistant to exfoliation. However, resistance to exfoliationvaried with the temperatures reached in the heat affected zones (HAZs). The HAZ exposedto the lowest temperatures during welding, HAZ (LT), was the most susceptible to exfoli-ation, whereas the HAZ exposed to the highest temperatures, HAZ (HT), presented highresistance to exfoliation, similarly to the SZ. The ASTM-G34 practice was an effective anduseful method in identifying the different exfoliation resistances of the BM and the vari-ous zones affected by FSW. The results of this practice were supported by electrochemicalimpedance spectroscopy (EIS) tests.
  • Artigo IPEN-doc 25749
    Comparison of the corrosion resistance of an Al–Cu alloy and an Al–Cu–Li alloy
    2019 - MILAGRE, MARIANA X.; DONATUS, UYIME; MACHADO, CARULINE S.C.; ARAUJO, JOAO V.S.; SILVA, REJANE M.P. da; VIVEIROS, BARBARA V.G. de; ASTARITA, ANTONELLO; COSTA, ISOLDA
    In this study, the corrosion mechanisms of the AA2024-T3 and the AA2098-T351 were investigated and compared using various electrochemical techniques in 0.005 mol L−1 NaCl solution. The severe type of corrosion in the AA2098-T351 was intragranular attack (IGA) although trenching and pitting related to the constituent particles were seen. On the other hand, the AA2024-T3 exhibited severe localised corrosion associated with micrometric constituent particles, and its propagation was via grain boundaries leading to intergranular corrosion (IGC). Electrochemical techniques showed that the corrosion reaction in both alloys was controlled by diffusion. The non-uniform current distribution in both alloys showed that EIS was not a proper technique for comparing the corrosion resistance of the alloys. However, local electrochemical techniques were useful for the evaluation of the corrosion resistance of the alloys.