JOAO VICTOR DE SOUSA ARAUJO

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 10 de 26
  • Artigo IPEN-doc 28933
    Corrosion behaviour of the 2098-T351 Al–Cu–Li alloy after different surface treatments
    2022 - BARBOZA, WANESSA das G.; MILAGRE, MARIANA X.; DONATUS, UYIME; MACHADO, CARULINE de S.C.; RAMIREZ, OSCAR M.P.; ARAUJO, JOAO V. de S.; SILVA, REJANE M.P. da; COSTA, ISOLDA
    The effect of different surface treatments on the corrosion resistance of the AA2098 Al–Cu–Li alloy has been investigated. Surface characterization was performed using 3D optical profilometry, energy dispersive X-ray spectroscopy and scanning electron microscopy. The corrosion resistance of the 2098 alloy after the surface treatments was investigated in 0.1 mol L−1 NaCl solution by electrochemical techniques and microscopy. Corrosion results showed that the untreated and the chemically etched surfaces were more active than the mechanically abraded and mechanically polished surfaces owing to differences in the nature of the native oxides formed after the surface treatments. Corrosion rate and mode were also affected by how close the exposed surface was to the mid-thickness region of the AA2098-T351 plate relative to the actual top surface (before polishing). This is associated with the variation in the volume fraction and distribution of the T1 phase as the mid-thickness region of the AA2098-T351 plate is approached.
  • Artigo IPEN-doc 28770
    TSA anodising voltage effects on the near-surface coarse intermetallic particles in the AA2024-T3 and AA2198-T8 alloys
    2022 - ARAUJO, JOAO V. de S.; MILAGRE, MARIANA X.; KLUMPP, RAFAEL E.; AYUSSO, VICTOR H.; DONATUS, UYIME; COSTA, ISOLDA
    In this study, the behaviour of the micrometric particles of the AA2198-T8 alloy during anodising at various voltages and the effect of anodising voltage on the anodised surface morphology have been investigated in a tartaric-sulfuric acid anodising solution. The results were compared with that of the AA2024-T3 alloy. For the AA2198-T8 alloy, partial dissolution of these particles occurred at 0, 3 and 4 V. Besides, for potentials above 5 V, there is a preferential dissolution of the intermetallic particles. For the AA2024-T3 alloy, the results indicated a total dissolution of the micrometric particles at 0 V and a partial dissolution at 3 V, whereas above 4 V total dissolution occurred. Between 1 and 2 V, no dissolution was observed for both alloys. The preferential dissolution of the micrometric particles resulted in defects in the anodic film and cavities on the anodised surfaces.
  • Capítulo IPEN-doc 28533
    Corrosion resistance of precipitation-hardened Al alloys
    2021 - DONATUS, UYIME; BODUNRIN, MICHAEL O.; OLAYINKA, AYOTUNDE; MILAGRE, MARIANA X.; OLOYEDE, OLAMILEKAN R.; ARIBO, SUNDAY; ARAUJO, JOAO V. de S.; MACHADO, CARULINE de S.C.; COSTA, ISOLDA
    The corrosion resistance of conventional (AA2024-T3, AA6082-T6 and AA7050-T7451) and the new generation (AA2050-T84, AA2098-T351, AA2198-T8, and AA2198-T851) precipitation-hardened alloys has been studied and compared using electrochemical and non-electrochemical approaches. The AA6082-T6 was the most resistant alloy followed by the new generation Al-Cu-Li alloys, except the AA2050-T84. All the alloys exhibited pseudo-passivity, except for the AA2024-T3 alloy which presented the highest number of pitting sites per cm2 and also exhibited the most insidious form of corrosion amongst the alloys tested. However, the alloy with the highest corrosion depth was the AA2050-T84 alloy followed by the AA2024-T3 and AA7050-T7451 alloys. Intergranular corrosion was associated with rapid rates of penetration. In addition to the microstructural features of the alloys before corrosion, the modes of localized corrosion in the alloys were also influenced by evolving microstructural features (such as re-deposited Cu) during corrosion.
  • Artigo IPEN-doc 28531
    Influence of chloride ions concentration on the development of severe localised corrosion and its effects on the electrochemical response of the 2198-T8 alloy
    2021 - MACHADO, CARULINE de S.C.; SILVA, REJANE M.P. da; ARAUJO, JOAO V. de S.; MILAGRE, MARIANA X.; DONATUS, UYIME; VIVEIROS, BARBARA V.G. de; KLUMPP, RAFAEL E.; COSTA, ISOLDA
    The development of severe localised corrosion (SLC) on the 2198-T8 alloy was investigated in solutions of various NaCl concentrations (0.001, 0.005 and 0.01 mol L−1). Immersion tests, optical profilometry, conventional and local electrochemical analyses were performed to evaluate the corrosion behaviour of the alloy. Immersion tests showed that the alloy is susceptible to SLC in all conditions, although the pits sizes were dependent on the solution concentration. The largest anodic areas, corresponding to SLC sites, were observed for the sample immersed in 0.001 mol L−1 NaCl, whereas pits with similar sizes were observed for the samples immersed in solutions with 0.005 and 0.01 mol L−1 of NaCl. Moreover, the maximum depth of attack was observed for the sample immersed in 0.001 mol L−1 NaCl. These results were in agreement with the scanning ionselective electrode technique (SIET) maps which showed stronger acidification on the sample exposed to 0.001 mol L−1 NaCl solution.
  • Artigo IPEN-doc 27812
    How microstructure affects localized corrosion resistance of stir zone of the AA2198-T8 alloy after friction stir welding
    2021 - MACHADO, CARULINE de S.C.; DONATUS, UYIME; MILAGRE, MARIANA X.; ARAUJO, JOAO V. de S.; VIVEIROS, BARBARA V.G. de; KLUMPP, RAFAEL E.; PEREIRA, VICTOR F.; COSTA, ISOLDA
    In this study, the microstructure and corrosion resistance of the stir zone (SZ) of the AA2198-T8 Al-Cu-Li alloy welded by friction stir welding (FSW) were investigated by microscopy, immersion tests and electrochemical techniques such as measurements of open circuit potential variation with time, and scanning vibrating electrode technique (SVET) measurements. A low chloride-containing solution (0.005 mol L−1 NaCl) was employed in the corrosion studies and severe localized corrosion (SLC) was observed in the SZ related to intergranular attack. The results were compared to those of the non-affected areas by FSW, also known as base metal (BM). In the BM, SLC was found and the type of attack related to it was intragranular. In both zones, BM and SZ, SLC was due to precipitates of high electrochemical activity, specifically T1 (Al2CuLi) phase in the BM, whereas TB (Al7Cu4Li) / T2 (Al6CuLi3) in the SZ. Scanning vibrating electrode technique (SVET) analysis was very useful in the study of SLC in the AA2198-T8 alloy showing the development of high anodic current densities at the mouth of the SLC sites.
  • Artigo IPEN-doc 27712
    Corrosion protection of the AA2198-T8 alloy by environmentally friendly organic-inorganic sol-gel coating based on bis-1,2-(triethoxysilyl) ethane
    2021 - KLUMPP, RAFAEL E.; DONATUS, UYIME; SILVA, REJANE M.P. da; ANTUNES, RENATO A.; MACHADO, CARULINE de S.C.; MILAGRE, MARIANA X.; ARAUJO, JOAO V. de S.; VIVEIROS, BARBARA V.G. de; COSTA, ISOLDA
    In this work, a surface coating composed of organic‐inorganic hybrid sol‐gel based on bis‐1,2‐(triethoxysilyl) (BTSE) ethane was applied on AA2198‐T8 samples, and its effect on corrosion resistance was investigated and compared with that of a chromate layer formed in a solution with hexavalent chromium ions. The corrosion resistance of BTSE coated samples was evaluated by immersion tests in sodium chloride solution (0.005 mol/L NaCl) and monitored by global electrochemical techniques such as electrochemical impedance spectroscopy (EIS) and local electrochemical techniques such as scanning vibrating electrode technique (SVET) and scanning electrochemical microscopy (SECM). The formed coating layers were characterized by X‐ray photoelectron spectroscopy (XPS). The results pointed out that the BTSE is an effective alternative coating for corrosion protection of new generation Al‐Cu‐Li alloys and could replace chromates obtained in toxic and carcinogenic CrVI containing solutions leading to improved corrosion protection.
  • Artigo IPEN-doc 27402
    Microstructural, electrochemical and localized corrosion characterization of the AA2198-T851 alloy
    2020 - ARAUJO, JOAO V. de S.; SILVA, REJANE M.P. da; DONATUS, UYIME; MACHADO, CARULINE de S.C.; COSTA, ISOLDA
    In the present work, the microstructure, electrochemical behavior and localized corrosion of the AA2198-T851 Al-Cu-Li alloy were studied. The microstructure was correlated with corrosion results obtained by immersion, gel visualization and scanning electrochemical microscopy (SECM) tests. Immersion and gel visualization tests showed high kinetics of corrosion attack during the first hours of immersion. SECM analyzes by means of surface generation/tip collection (SG/TC) mode detected hydrogen evolution generated during spontaneous corrosion from severe localized corrosion (SLC) sites on the metal surface. SECM results revealed sites of intense hydrogen evolution after 2 h of immersion and increased amounts of corrosion products after 4 h of immersion. Hydrogen evolution sites detected by SECM were associated with severe localized corrosion (SLC).
  • Artigo IPEN-doc 27178
    Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding
    2020 - MILAGRE, MARIANA X.; DONATUS, UYIME; MOGILI, NAGA V.; SILVA, REJANE M.P.; VIVEIROS, BARBARA V.G. de; PEREIRA, VICTOR F.; ANTUNES, RENATO A.; MACHADO, CARULINE S.C.; ARAUJO, JOAO V.S.; COSTA, ISOLDA
    Scanning electrochemical microscopy (SECM) and scanning vibrating electrode technique (SVET) were used to investigate the electrochemical behaviour of the top surface of the 2098-T351 alloy welded by friction stir welding (FSW). The SVET technique was efficient in identifying the cathodic and anodic weld regions. The welding joint (WJ), which comprises the thermomechanically affected zone (TMAZ) and the stir zone (SZ), was cathodic relative to the heated affected zone (HAZ) and the base metal (BM). The reactivities of the welding joint at the advancing side (AS) and the retreating side (RS) were analyzed and compared using SECM technique in the competition mode by monitoring the dissolved oxygen as a redox mediator in 0.005 mol L−1 NaCl solution. The RS was more electrochemically active than the AS, and these results were correlated with the microstructural features of the welded alloy.
  • Artigo IPEN-doc 26885
    The effect of acid pickling on the corrosion behavior of a cerium conversion-coated AA2198-T851 Al-Cu-Li alloy
    2020 - KLUMPP, RAFAEL E.; DONATUS, UYIME; ARAUJO, JOAO V.S.; REDÍGOLO, MARCELO M.; MACHADO, CARULINE de S.C.; COSTA, ISOLDA
    The effect of acid pickling pretreatments prior to cerium conversion coating process on the corrosion behavior of AA2198-T851 alloy substrates was investigated. Three acid pretreatments were employed: nitric acid (HNO3), phosphoric acid (H3PO4) and sulfuric acid (H2SO4). The cerium conversion coating process was performed using a batch solution composed of cerium nitrate and hydrogen peroxide. Microscopic techniques, electrochemical impedance spectroscopy, polarization resistance and open-circuit potential measurements were employed to investigate the effect of each acid pretreatment. The untreated and nitric acid pretreated substrates presented more defective cerium conversion layers than the substrates treated with phosphoric and sulfuric acids. Accordingly, the corrosion resistance of the untreated and nitric acid-treated substrates was very low, while that of the substrates treated with phosphoric acid and sulfuric acids were greatly improved. The sulfuric acid pickling treatment was the best pretreatment before cerium conversion coating among the investigated pretreatments on the AA2198-T851 Al-Cu-Li alloy.
  • Artigo IPEN-doc 26823
    Effects of chloride ion concentration on the corrosion behavior of the AA2198-T8 alloy
    2019 - MACHADO, CARULINE de S.C.; SILVA, REJANE M. da; ARAUJO, JOAO V. de S.; DONATUS, UYIME; MILAGRE, MARIANA X.; KLUMPP, RAFAEL E.; ROSSI, JESUALDO L.; COSTA, ISOLDA
    In this work, the influence of chloride ions concentration on the corrosion behavior of the AA2198-T8 alloy was evaluated. Immersion test and electrochemical analyses were performed in sodium chloride solutions of three concentrations, 0.001 mol L-1, 0.005 mol L-1 and 0.01 mol L-1. The results showed that the AA2198-T8 alloy was susceptible to localized corrosion (LC) and to severe localized corrosion (SLC) in all conditions investigated. The electrochemical results obtained by open circuit potential measurements, cyclic voltammetry and potentiodynamic polarization curves were associated with the corroded microstructure of the alloy. Although electrochemical techniques allowed differentiating the corrosion resistance as a function of chloride concentration, the result was strongly influenced by the corroded/uncorroded area ratio related to the SLC.