JOAO VICTOR DE SOUSA ARAUJO

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 9 de 9
  • Artigo IPEN-doc 29682
    Investigação da atividade eletroquímica de liga Al-Cu-Li após processo de soldagem por fricção e mistura
    2023 - SILVA, REJANE M.P. da; MILAGRE, MARIANA X.; ARAUJO, JOAO V. de S.; RAMIREZ, OSCAR M.P.; MACHADO, CARULINE de S.C.; ANTUNES, RENATO A.; COSTA, ISOLDA
    In this work, the local electrochemical activity of the zones coupled by Friction Stir Welding (FSW) of an Al-Cu-Li alloy was studied and the results were correlated to the microstructural characteristics of each zone. Electrochemical studies were carried out in the zones affected by welding using cyclic voltammetry (CV) and scanning electrochemical techniques (namely, SECM - Scanning Electrochemical Microscopy and LEIS – Local electrochemical impedance spectroscopy). The results showed that the welding joint (WJ) is predominantly cathodic relatively to the heat affected zones (HAZ). The HAZ was always anodic and showed the highest electrochemical activities among the tested ones. The high electrochemical activity of the HAZ was associated with the effect of galvanic coupling between the cathodic region (WJ) and the anodic region (HAZ). In addition, the advancing side (AS) presented increased electrochemical activity compared to the retreating one (RS).
  • Artigo IPEN-doc 29079
    A cerium-based nanocoating for corrosion protection of the AA1230 as clad material for the AA2024-T3 alloy
    2022 - KLUMPP, RAFAEL E.; ARAUJO, JOAO V. de S.; ANTUNES, RENATO A.; VIVEIROS, BARBARA V.G. de; MAGNANI, MARINA; COSTA, ISOLDA
    Aluminum alloys are the state-of-art materials for structural components of aircrafts. As they are susceptible to localized corrosion, this kind of damage can become a major threat for its safe use in aircraft components. Therefore, surface protection of aluminum alloys against corrosion is a core issue in these applications. In this work, an alternative eco-friendly cerium-based surface pretreatment was developed and applied on the AA1230 clad of the AA2024-T3 alloy for corrosion protection. The corrosion resistance evaluation of this modified surface was evaluated by several techniques. The results were compared to chromium based conventional treatments and revealed that the coating layer, composed of spherical nodular nanostructures of cerium, obtained with the proposed eco-friendly treatment, improved the corrosion resistance of the alloy. Moreover, it was comparable to the corrosion behavior of chromate-treated alloy, showing that this treatment is a promising alternative to replace chromate based surface treatments.
  • Artigo IPEN-doc 28885
    Compreendendo os mecanismos de corrosão de ligas de Al-Cu-Li
    2022 - ARAUJO, JOAO V. de S.; SILVA, REJANE M.P. da; VIVEIROS, BARBARA V.; MILAGRE, MARIANA X.; MACHADO, CARULINE de S.C.; COSTA, ISOLDA
    In this study, the corrosion mechanism of an Al-Cu-Li alloy manufactured by two different treatment routes (T3 and T851) was evaluated by immersion and electrochemical tests in solutions containing chloride ions (Cl-). For both alloys, the formation of cavities on the surface was associated with micrometer-sized intermetallics (IM’s), however, in addition to this attack, the alloy submitted to T851 treatment also presented an attack called severe localized corrosion (SLC), caused by the preferential attack to the nanometric T1 (Al2CuLi) phase. The electrochemical concepts involved in these two types of attacks were discussed. During the IM’s corrosive process, whereas the O2 reduction occurred over the IM’s, the Al dissolution is favored around the particle, forming trenching and cavities (with 2 and 6 mm of depth). On the other hand, the mechanism associated with the SLC is related to the formation of a differential aeration cell followed by the evolution of H2, with greater depth of attack penetration (8 and 35 mm). Additionally, by the use of the Scanning Vibrating Electrode Technique (SVET), it was concluded that the higher anodic currents observed for the T851 temper were related to the relation between the anodic area (Aa) and the cathodic area (Ac).
  • Artigo IPEN-doc 28150
    O processo de anodização do alumínio e suas ligas
    2021 - ARAUJO, JOAO V. de S.; SILVA, REJANE M.P. da; KLUMPP, RAFAEL E.; COSTA, ISOLDA
    Al and its alloys are found in several industrial applications. However, like most metals, this material is not immune to corrosion, being necessary to be protected against corrosion. One of the methods most commonly employed to improve the corrosion resistance of Al alloys is the anodizing process, which consists of thickening of the natural oxide (Al2O3) presents in Al through anodic oxidation. The anodizing process is accomplished by immersion of the Al alloy into an acid bath and passing an electric current through it. This process produces two layers: a barrier layer thicker than the natural oxide and a layer with regular arrangement of nanopores (porous layer). This duplex structure forms the anodized layer with a large specific surface area. With the advent of nanotechnology, this layer has been applied in other areas due to its low cost, stability, absence of toxicity, and biocompatibility. In this context, this paper addresses a historical and electrochemical review of the anodizing process of Al and its alloys, presenting the main events that culminated in the development of the current processes and the understanding of the relationship between the chemical reactions and the mechanisms that occur during nucleation and development of the oxide layer.
  • Artigo IPEN-doc 27712
    Corrosion protection of the AA2198-T8 alloy by environmentally friendly organic-inorganic sol-gel coating based on bis-1,2-(triethoxysilyl) ethane
    2021 - KLUMPP, RAFAEL E.; DONATUS, UYIME; SILVA, REJANE M.P. da; ANTUNES, RENATO A.; MACHADO, CARULINE de S.C.; MILAGRE, MARIANA X.; ARAUJO, JOAO V. de S.; VIVEIROS, BARBARA V.G. de; COSTA, ISOLDA
    In this work, a surface coating composed of organic‐inorganic hybrid sol‐gel based on bis‐1,2‐(triethoxysilyl) (BTSE) ethane was applied on AA2198‐T8 samples, and its effect on corrosion resistance was investigated and compared with that of a chromate layer formed in a solution with hexavalent chromium ions. The corrosion resistance of BTSE coated samples was evaluated by immersion tests in sodium chloride solution (0.005 mol/L NaCl) and monitored by global electrochemical techniques such as electrochemical impedance spectroscopy (EIS) and local electrochemical techniques such as scanning vibrating electrode technique (SVET) and scanning electrochemical microscopy (SECM). The formed coating layers were characterized by X‐ray photoelectron spectroscopy (XPS). The results pointed out that the BTSE is an effective alternative coating for corrosion protection of new generation Al‐Cu‐Li alloys and could replace chromates obtained in toxic and carcinogenic CrVI containing solutions leading to improved corrosion protection.
  • Artigo IPEN-doc 27686
    Mecanismo de evolução de hidrogênio durante a corrosão da liga 2198-T8 em meio contendo cloreto
    2020 - ARAUJO, JOAO V. de S.; SILVA, REJANE M.P. da; MILAGRE, MARIANA X.; MACHADO, CARULINE de S.C.; COSTA, ISOLDA
    Corrosion is still one of the most serious and frequent problems in industries. The phenomena involved in the corrosion mechanism of Al-alloys may be explained by formation of galvanic cells between the metal matrix and heterogeneities, such as precipitates, intermetallic phases leading to potential differences and electrochemical reactions. In the cathodic sites, the main reactions are oxygen reduction reaction, in aerated neutral environments, and hydrogen evolution in acid media. This last type of reaction might also occur in neutral solutions inside pits (anodic region). In this study, the mechanism of hydrogen evolution during corrosion of the 2198-T8 Al-Cu-Li alloy exposed in a chloride solution was investigated. The mechanism was related to the presence of T1 phase (Al2CuLi), which is the main strengthening phase in this material. This phase is highly active and, when exposed to corrosive media, leads to severe localized corrosion (SLC). One of the main characteristics related to SLC is hydrogen gas evolution which was confirmed by gel visualization. In this study, the hydrogen evolution mechanism inside the SLC sites was studied by scanning electrochemical microscopy (SECM).
  • Artigo IPEN-doc 27402
    Microstructural, electrochemical and localized corrosion characterization of the AA2198-T851 alloy
    2020 - ARAUJO, JOAO V. de S.; SILVA, REJANE M.P. da; DONATUS, UYIME; MACHADO, CARULINE de S.C.; COSTA, ISOLDA
    In the present work, the microstructure, electrochemical behavior and localized corrosion of the AA2198-T851 Al-Cu-Li alloy were studied. The microstructure was correlated with corrosion results obtained by immersion, gel visualization and scanning electrochemical microscopy (SECM) tests. Immersion and gel visualization tests showed high kinetics of corrosion attack during the first hours of immersion. SECM analyzes by means of surface generation/tip collection (SG/TC) mode detected hydrogen evolution generated during spontaneous corrosion from severe localized corrosion (SLC) sites on the metal surface. SECM results revealed sites of intense hydrogen evolution after 2 h of immersion and increased amounts of corrosion products after 4 h of immersion. Hydrogen evolution sites detected by SECM were associated with severe localized corrosion (SLC).
  • Artigo IPEN-doc 26885
    The effect of acid pickling on the corrosion behavior of a cerium conversion-coated AA2198-T851 Al-Cu-Li alloy
    2020 - KLUMPP, RAFAEL E.; DONATUS, UYIME; ARAUJO, JOAO V.S.; REDÍGOLO, MARCELO M.; MACHADO, CARULINE de S.C.; COSTA, ISOLDA
    The effect of acid pickling pretreatments prior to cerium conversion coating process on the corrosion behavior of AA2198-T851 alloy substrates was investigated. Three acid pretreatments were employed: nitric acid (HNO3), phosphoric acid (H3PO4) and sulfuric acid (H2SO4). The cerium conversion coating process was performed using a batch solution composed of cerium nitrate and hydrogen peroxide. Microscopic techniques, electrochemical impedance spectroscopy, polarization resistance and open-circuit potential measurements were employed to investigate the effect of each acid pretreatment. The untreated and nitric acid pretreated substrates presented more defective cerium conversion layers than the substrates treated with phosphoric and sulfuric acids. Accordingly, the corrosion resistance of the untreated and nitric acid-treated substrates was very low, while that of the substrates treated with phosphoric acid and sulfuric acids were greatly improved. The sulfuric acid pickling treatment was the best pretreatment before cerium conversion coating among the investigated pretreatments on the AA2198-T851 Al-Cu-Li alloy.
  • Artigo IPEN-doc 25861
    Effect of surface treatments on the localized corrosion resistance of the AA2198‐T8 aluminum lithium alloy welded by FSW process
    2019 - MACHADO, CARULINE de S.C.; KLUMPP, RAFAEL E.; AYUSSO, VICTOR H.; DONATUS, UYIME; MILAGRE, MARIANA X.; ARAUJO, JOAO V. de S.; MACHADO, GLAUSON A.F.; COSTA, ISOLDA
    In this work, the effect of eight types of surface treatments on the corrosion resistance of friction stir welded samples of an AA2198‐T8 Al‐Cu‐Li alloy were tested and compared in an attempt to find suitable alternatives to toxic and carcinogenic hexavalent chromium treatments. All the samples were anodized and subjected to different post‐anodizing treatments. The post‐anodizing treatments were (1) hydrothermal treatment in Ce (NO3)3 6H2O solution; (2) hydrothermal treatment in Ce (NO3)3 6H2O solution with H2O2; (3) hydrothermal treatment in boiling water; (4) hexavalent chromium conversion coating; and (5) immersion in BTSE (bis‐1,2‐(triethoxysilyl) ethane. The corrosion resistance of the treated samples was evaluated by immersion tests in sodium chloride solution (0.1 mol L−1 NaCl) and electrochemical impedance spectroscopy (EIS) of the friction stir weldment. The results showed that among the alternative treatments, the Ce‐containing solutions presented the best corrosion resistance, especially when used without peroxide.