MARIA JOSE ALVES DE OLIVEIRA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Artigo IPEN-doc 27825
    Gamma and electron beam irradiation effects for conservation treatment of cellulose triacetate photographic and cinematographic films
    2021 - NAGAI, MARIA L.E.; SANTOS, PAULO de S.; OTUBO, LARISSA; OLIVEIRA, MARIA J.A.; VASQUEZ, PABLO A.S.
    Photographic and cinematographic films of cellulose triacetate safeguarded in historical and cultural institutions are often contaminated by fungi when stored in inadequate conditions of humidity and temperature. The presence of fungi affects the image contained in the films, accelerates the process of biodeterioration and represents a risk to the health of people working with contaminated materials. In addition, another common physicochemical degradation affecting cellulose triacetate films causing deacetylation of polymer chain is called “vinegar syndrome”. Considering the dose interval established for the disinfection of cultural heritage materials, in this work the effects of irradiation with gamma rays and electron beam on photographic and cinematographic films of cellulose triacetate were evaluated. Additionally, the thermal stability behavior of the films and the feasibility of crosslinking of CTA films were investigated. Film samples were selected and characterized by FTIR-ATR spectroscopy. Irradiated samples by gamma rays and electron beam with radiation absorbed doses between 6 kGy and 200 kGy were examined by FEGSEM microscopy, UV–Vis spectrophotometry and differential scanning calorimetry (DSC). The results showed that disinfection by gamma and electron beam irradiation, in the dose range of 6 kGy–10 kGy, does not change or modification of main properties of the constitutive materials of photographic and cinematographic films. The applied dose of 50 kGy, both gamma rays and electron beam, indicated a crosslinking effect on the films and can be considered a possibility for the treatment of films affected by the “vinegar syndrome”.
  • Artigo IPEN-doc 24036
    Preservation of photographic and cinematographic films by gamma radiation- preliminary analyses
    2017 - NAGAI, MARIA L.E.; SANTOS, PAULO S.; OTUBO, LARISSA; OLIVEIRA, MARIA J.A.; VASQUEZ, PABLO A.S.
    Brazilian weather conditions affect directly tangible materials causing deterioration notably getting worse by insects and fungi attack. In this sense, gamma radiation provided from the cobalt-60 is an excellent alternative tool to the traditional preservation process mainly because it has biocidal action. Radiation processing using gamma radiation for cultural heritage materials for disinfection has been widely used around the world in the last decades. Many cultural heritage objects especially made on paper and wood were studied in scientific publications aiming mechanical, physical and chemical properties changes. Over the last fifteen years, the Multipurpose Gamma Irradiation Facility of the Nuclear and Energy Research Institute located inside the Sao Paulo University campus has been irradiated many collections of archived materials, books, paintings and furniture. Adequate storage of photographic and cinematographic materials is a challenge for conservators from preservation institutions. Contamination by fungi is one of leading causes of problem in photographic and cinematographic collections. Several Sao Paulo University libraries have been affected by fungi in their photographic and cinematographic collections making it impossible to research on these materials either manipulate them for health and safety reasons. In this work are presented preliminary results of effects of the ionizing radiation in photographic and cinematographic films. Selected film samples made on cellulose acetate were prepared and characterized by FTIR-ATR spectroscopy. Samples were irradiated by gamma rays with absorbed dose between 2 kGy and 50 kGy. Irradiated samples were analyzed by UV-VIS spectroscopy and electron microscopy techniques. Results shown that disinfection by gamma radiation can be achieved safely applying the disinfection dose between 6 kGy to 15 kGy with no significant change or modification of main properties of the constitutive materials.