MAURILIO PEREIRA GOMES

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • Artigo IPEN-doc 25118
    Study on the viability of the recycling by electric arc melting of zirconium alloys scraps aiming the scalability of the process
    2018 - MUCSI, C.S.; REIS, L.A.M. dos; GOMES, M.P.; PEREIRA, L.A.T.; ROSSI, J.L.
    Turning chips of zirconium alloys are produced in large quantities during the machining of alloy rods for the fabrication of the end plugs for the Pressurized Water Reactor (PWR) fuel elements parts of Angra II nuclear reactor (Brazil – Rio de Janeiro). This paper presents a study on the search for an efficient way for the cleaning, quality control and Vacuum Arc Remelting (VAR) of pressed zirconium alloys chips to produce a material viable to be used in the production of the fuel rod end plugs. The process starts with cutting oil clean out. The first step in this process consists in soaking a bunch of chips in clean water, to remove soluble cutting oils, followed by an alkaline degreasing bath and a wash with a high-pressure flow of water. Drying is performed by a flux of warm air. The oil free chips are then subjected to a magnet in order to detect and collect any magnetic material, essentially ferrous, that may be present in the original chips. Samples of the material are collected and then melted in a small non consumable electrode vacuum arc furnace for evaluation by Energy Dispersive X-ray Fluorescence Spectrometry (EDXRFS) in order to define the quality of the chips. The next step consists in the 15 ton hydraulic pressing the chips in a die with 40 mm square section and 500 mm long, producing an electrode with 20% of the Zircaloy bulk density. The electrode was finally melted in a laboratory scale modified VAR furnace located at the CCTM–IPEN, producing 0.8 kg ingots. The authors conclude that the samples obtained from the fuel element industry can be melting in a VAR furnace, modified to accommodate low density electrodes, allowing a reduction up to 40 times the original storage volume, however, it is necessary to remelt the ingots to correct their composition in order to recycle the original zirconium alloys chips. in a process to reduce volume and allow the reutilization of valuable Zircaloy scraps.
  • Artigo IPEN-doc 25083
    Diffusion analyses using GDOES technique of the 22MnB5 press hardened steel with Al-Si and Zn-Ni coatings
    2018 - COUTO, C.P.; POLITANO, R.; GOMES, M.P.; COLOSIO, M.A.; ROSSI, J.L.
    The hot stamping process consists to heat the steel blank, at total austenitization temperatures and to transfer it into the press tooling for forming and fast cooling to fully martensitic transformation. This transference from furnace to press stage promotes some steel oxidation. The application of metallic coatings avoids this phenomenon. The Al-Si coating, a patented process, has been the most applied on steel. Hence, alternative coatings like Zn-Ni are under development. It is known that this furnace heating causes chemical elements diffusion that results in intermetallics formation. This study had the objective of analyze the diffusion profiles of chemical elements present in the substrate, 22MnB5 steel, and coatings of Al-Si and Zn-Ni, using glow-discharge optical emission spectroscopy - GDOES and to correlate the results with those obtained with energy dispersive X-ray spectroscopy - EDS. The results showed that for the Zn-Ni sample, the Zn and Fe profiles at the interfacial zone, are predominant; which justify the high proportion of ZnFe phases as showed using scanning electron microscopy - SEM images. For the Al-Si sample at the interfacial zone, the profile of Al and Fe varies simultaneously; besides that, silicon diffusion in the substrate is more effectively than the nickel diffusion. For this reason, it was possible to identify AlFeSi phase near to the steel substrate.
  • Artigo IPEN-doc 25061
    Study of the thermal diffusivity variation in thin duplex steel plates welded by GTAW process
    2018 - BETINI, EVANDRO G.; GOMES, MAURILIO P.; MUCSI, CRISTIANO S.; LUZ, TEMISTOCLES de S.; ORLANDO, MARCOS T.D.; ROSSI, JESUALDO L.
    This study describes the thermal diffusivity of thin duplex steel plates in the thickness direction measured using the laser-flash method after welding. The work reports the experimental efforts in recording temperature profiles of the grade UNS S32304 duplex steel during autogenous welding. The butt weld autogenous joints were carried out by the GTAW (gas tungsten arc welding) process with either argon or argon - 2% nitrogen atmospheres. The amount of nitrogen in the heat affected regions, after welding, was measured and correlated with the variation of the thermal diffusivity of the studied material. The temperature profiles were obtained using k-type thermocouples connected to a digital data acquisition system. Different thermal cycles and thermal diffusivity values were observed in the heat-affected zone (HAZ) for both samples. In the solidified zone (SZ) was observed similar increase of the thermal diffusivity values for the plates welded with pure argon and argon plus nitrogen atmosphere.