THAIS FREITAS RABELO

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 1 de 1
  • Resumo IPEN-doc 27989
    In vitro determination of the critical pH demineralization of human dental enamel irradiated with Nd:YAG laser associated with fluoridated product
    2019 - JUVINO, AMANDA C.; ZAMATARO, CLAUDIA B.; RABELO, THAIS F.; KUCHAR, NIELSEN G.; ZANINI, NATHALIA; CASTRO, PEDRO; ZEZELL, DENISE
    The use of fluoride products associated with high intensity laser irradiation are beneficial for dental caries prevention because it increases the surface area, improving the formation of fluorapatite (FA), which gives greater acid-resistance of enamel against bacterial acids. The objective of this study is to determine the critical pH of dental enamel treated with acid fluoride phosphate 12,300 lF-/g (APF) and Nd:YAG laser 84 J/cm2, as there is no precedent to determine this pH. The study consisted of 4 groups (n = 15): G1: Negative Control; G2: APF; G3: Nd:YAG; G4: APF + Nd:YAG. Each group was randomized into three subgroups (n = 5) for pH cycling. The cycling was designed to simulate three conditions: below critical pH of enamel hydroxyapatite (pH 5.0); pH below critical for hydroxyapatite and fluorapatite (pH 4.5); condition further below the critical situation to investigate extent of acid resistance of the enamel (pH 4.0). The samples were analyzed by scanning electron microscopy (SEM), Fourier infrared spectroscopy (FTIR) and solutions were quantified fluoride (specific ion electrode) and phosphate (colorimetric method). In SEM and FTIR (phosphate band) at pH 5, only the APF and APF + Nd:YAG groups did not present demineralization. At pH 4.5, only the APF + Nd:YAG group was integrated. At pH 4, APF + Nd:YAG showed signs of mild demineralization while the other groups showed aggressive signals. It is concluded that the irradiated fluorapatite has critical dissolution pH different from fluorapatite formed only with the application of fluorine.