THAIS FREITAS RABELO

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Artigo IPEN-doc 27710
    Morphological, optical, and elemental analysis of dental enamel after debonding laminate veneer with Er,Cr:YSGG laser
    2021 - ZANINI, NATHALIA A.; RABELO, THAIS F.; ZAMATARO, CLAUDIA B.; CARAMEL-JUVINO, AMANDA; ANA, PATRICIA A.; ZEZELL, DENISE M.
    Laminate veneer removal is becoming a routine procedure at the dental clinic and the use of laser can facilitate its removal. This work aimed to evaluate the morphological, elemental, and optical changes in the remaining enamel after veneer removal using Er,Cr:YSGG laser. Forty‐four enamel slabs were prepared and randomly distributed into nine experimental groups, for bonding using lithium disilicate laminates with three different luting agents (Variolink Veneer, RelyX U200, and RelyX Veneer). Then each agent was debonded using Er,Cr:YSGG laser (2.78 μm) using two different protocols:3.5 W, 48.14 J/cm2, 20 Hz non‐contact and 3.0 W, 48.14 J/cm2, 20 Hz non‐contact. The morphological, optical, and elemental analysis of enamel was performed before cementation and after laser debonding, using scanning electron microscopy (SEM), optical coherence tomography (OCT), and energy‐dispersive X‐ray spectroscopy (EDS). The level of statistical significance adopted was 5%. The EDS analysis of enamel after debonding revealed a significant increase in silane and carbon, as well as a decrease in calcium and phosphate contents. Analysis showed the presence of residual cement in most experimental groups but the morphological analysis showed alteration of the enamel's prisms only in the groups that used RelyX Veneer and Variolink Veneer cements. There was no evidence of deleterious morphological changes resulting from irradiation. However, an increase in the optical attenuation coefficient by the OCT was observed due to the presence of the remaining cement. It can be concluded that the Er,Cr:YSGG laser, in the mean powers used, is efficient for veneer removal without causing deleterious effects for the enamel.
  • Artigo IPEN-doc 27155
    Human dental enamel evaluation after radiotherapy simulation and laminates debonding with Er,Cr:YSGG using SEM and EDS
    2019 - RABELO, THAIS F.; ZAMATARO, CLAUDIA B.; KUCHAR, NIELSEN G.; ZANINI, NATHALIA; JUVINO, AMANDA C.; DEL-VALLE, MATHEUS; CASTRO, PEDRO A.A.; SANTOS, MOISES O.; ZEZELL, DENISE M.
    The pursuit of perfection makes younger people undergo aesthetic procedures without formal indication. However, young patients may be susceptible to a disease such as head and neck cancer which treatment can compromise the adhesion of these indirect mate-rials. Here, we present an analyze, of the gamma radiation effects on crystallographic morphology of human dental enamel after laminate veneer debonding with Er,Cr:YSGG laser. Thus, human dental enamel samples were prepared and randomized into 2 groups (n=10): Laser Irradiation (L) and Gamma + Laser Irradiation (GL) group. Scanning elec-tron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were performed before bonding and after debonding using Er,Cr:YSGG. Only Gamma + Laser Irradia-tion group received a cumulative dose of 70 Gy gamma radiation used in head and neck cancer radiotherapy. SEM images showed that both GL and L groups presented altered morphology. EDS showed an decrease in Ca and P intensities after laser debonding of laminates veneers in both group. Therefore, a proper laser facet removal protocol should be established for healthy patients and patients who have been exposed to radiotherapy for head and neck cancer.