JOSE ANTONIO BATISTA DE SOUZA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • Artigo IPEN-doc 23162
    Effect of porosity on the manufacturing of U3O8-Al dispersion fuel plates
    2017 - DURAZZO, M.; SOUZA, J.A.B.; CARVALHO, E.F.U. de; RIELLA, H.G.
    The pore volume present in the starting fuel meat of dispersion fuel plates influences the behavior of its deformation during the fuel plate fabrication by rolling to a great extent. This study was carried out to investigate the influence of pore content in the starting fuel meat on the manufacturing of aluminum-base dispersion fuel plates. Factors that affect the residual porosity present in the meat of the fuel plate were investigated. Results showed that the residual pore volume of aluminum-base dispersion-type U3O8-Al fuel plates depends on the characteristics of the starting fuel meat, which is fabricated by pressing. The residual pore volume depends on the U3O8 concentration. For a particular U3O8 concentration, the rolling process establishes a constant pore volume, which is called equilibrium porosity. The equilibrium porosity is insensitive to the initial pore volume present in the starting fuel meat. The research showed that fuel meat integrity was greatly influenced by the initial porosity of the fuel meat. U3O8-Al dispersion fuel plates were successfully fabricated with uranium loading above 3.0 gU/cm(3). This uranium loading is equivalent to the one used in the U3Si2-Al dispersion fuel, currently operating at the lEA-R1 research reactor of the Nuclear and Energy Research Institute - IPEN/CNEN-SP. The U3O8-Al dispersion fuel can substitute the silicide fuel with advantages such as lower price and simpler manufacturing process.
  • Artigo IPEN-doc 23971
    Effect of temperature on corrosion and semiconducting properties of oxide films formed on M5 zirconium alloy
    2016 - ANTUNES, R.A.; OLIVEIRA, M.C.L. de; SOUZA, J.A.B. de
    Nuclear fuel cladding for pressurised water reactors is commonly manufactured with zirconium alloys. The M5 alloy is a relatively new cladding material for in-reactor used with enhanced performance compared to traditional zircaloys. In this work, the influence of temperature on the corrosion resistance and semiconducting properties of the passive film formed on the M5 alloy in a borate buffer solution has been evaluated. The electrochemical behaviour of the zirconium alloy was assessed by potentiodynamic polarisation tests, electrochemical impedance spectroscopy and Mott–Schottky plots. The results indicated that the corrosion resistance of the M5 alloy decreased with temperature due to the formation of a less stable and more defective passive film. The Mott–Schottky approach used in combination with polarisation tests and impedance measurements was effective to reveal the protective state of the passive film on the M5 alloy.
  • Artigo IPEN-doc 21711
    Effect of processing on microstructure and corrosion mitigating properties of hydrotalcite coatings on AA 6061 alloy
    2015 - FERNANDES, STELA M. de C.; CORREA, OLANDIR V.; SOUZA, JOSE A.B. de; ANTUNES, RENATO A.; LIMA, NELSON B. de; RAMANATHAN, LALGUDI V.