LUIS ANTONIO GENOVA

Resumo

Graduate at Materials Engineering from Universidade Federal de São Carlos (1984), working for six years in ceramic industries. Master's and Ph.D. at Nuclear Engineering from Universidade de São Paulo. Has experience in Material Engineering, focusing on Ceramics, acting on the following subjects: processing, sintering, ceramic microsphere, porous ceramic, ceramic machining, adsorption, photocatalisys. (Text obtained from the Currículo Lattes on November 12th 2021)


Possui graduação em Engenharia de Materiais pela Universidade Federal de São Carlos (1984), com atuação por seis anos em indústrias cerâmicas. Possui mestrado e doutorado pela Universidade de São Paulo (2003). Atualmente é tecnologista senior do Instituto de Pesquisas Energéticas e Nucleares. Tem experiência na área de Engenharia de Materiais, com ênfase em Cerâmicos, atuando principalmente nos seguintes temas: processamento, sinterização, microesferas cerâmicas, cerâmicas porosas, usinagem cerâmica, adsorção, fotocatálise. (Texto extraído do Currículo Lattes em 12 nov. 2021)

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 1 de 1
  • Artigo IPEN-doc 27841
    Alumina-toughened zirconia for dental applications
    2021 - BERGAMO, EDMARA T.P.; CARDOSO, KARINA B.; LINO, LUCAS F.O.; CAMPOS, TIAGO M.B.; MONTEIRO, KELLI N.; CESAR, PAULO F.; GENOVA, LUIS A.; THIM, GILMAR P.; COELHO, PAULO G.; BONFANTE, ESTEVAM A.
    To characterize the physicomechanical properties of an alumina-toughened zirconia (ATZ). ATZ synthesis consisted of the addition of alumina particles in an yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) matrix. Specimens were obtained by uniaxial and isostatic pressing ATZ and 3Y-TZP powders and sintering at 1600°C/1 h and 1550°C/1 h, respectively. Crystalline content and residual stress were evaluated using X-ray diffraction (XRD). Microstructure was characterized by scanning electron microscopy (SEM). Optical properties were determined by reflectance test. Mechanical properties were assessed by biaxial flexural strength test. All analyses were performed before and after aging (134°C, 20 h, 2 bar). XRD and SEM revealed a typical ATZ and 3Y-TZP crystalline content, chiefly tetragonal phase, with a dense polycrystalline matrix, though a smaller grain size for ATZ. Aging triggered a similar monoclinic transformation for both systems; however, ATZ exhibited higher residual compressive stresses than 3Y-TZP. While as-processed 3Y-TZP demonstrated significantly higher characteristic strength relative to ATZ, no significant difference was observed after aging (~215 MPa increase in the ATZ strength). ATZ presented significantly higher opacity relative to 3Y-TZP, although aging significantly increased the translucency of both systems (increase difference significantly higher in the 3Y-TZP compared to ATZ). ATZ physicomechanical properties support its applicability in the dental field, with a lower detrimental effect of aging relative to 3Y-TZP.