CECILIA CHAVES GUEDES E SILVA

Resumo

Possui graduação em Engenharia de Materiais pela Universidade Presbiteriana Mackenzie (1997), mestrado em Tecnologia Nuclear Aplicações pelo Instituto de Pesquisas Energéticas e Nucleares (2000) e doutorado em Tecnologia Nuclear Materiais pelo Instituto de Pesquisas Energéticas e Nucleares (2005). Atualmente é pesquisador do Instituto de Pesquisas Energéticas e Nucleares. Tem experiência na área de Engenharia de Materiais, atuando principalmente nos seguintes temas: materiais cerâmicos, biomateriais e materiais nucleares. (Texto extraído do Currículo Lattes em 08 out. 2021)

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Artigo IPEN-doc 30222
    Sintering of metallic diamond alloy powders
    2023 - RESTIVO, THOMAZ A.G.; NONATO, RAPHAEL B.P.; FIGUEIRA, ROSSANA R.; FERREIRA, ODIRLEI A.; PADOVANI, CLAUDIO; ARANHA, NORBERTO; BALDO, DENICESAR; SILVA, CECILIA G. e; DURAZZO, MICHELANGELO
    Metallic diamond (MD) is a new alloy class which hardness was found to surpass any current alloys at more than a twofold factor, up to 2500 HV (kgf mm−2). The alloy design employs simple metallurgical principles at the so-called Lattice Occupancy Project aided by Diamoy 1.0 software. The most important aspect of the alloy project considers the maximization of chromium equivalent values by selecting metallic elements for promoting body-centred cubic structures. Forming these alloys into parts is challenging, whereas powder metallurgy techniques appear as valid processing routes. The work studies the sintering behaviour of MD-4 and 5 alloy powders, being the hardest MD ones. High energy milled powder compacts were sintered in a dilatometer up to 1500 °C for 1 h under Ar-10%H2 atmosphere. Alloy MD-5 has shown intense shrinkage starting at 1150 °C, contrasting to marginal sintering of alloy MD-4. The latter has undergone transformations from 400 °C with strong expansion, which seems to block most of the sintering retraction at higher temperatures. Alloy powder MD-5 is a good candidate as a raw material for tool parts production by powder metallurgy, which can compete with cemented carbide hard tools.
  • Artigo IPEN-doc 28437
    Mechanical properties and in vitro bioactivity of silicon nitride ceramics with SiO2, CaO, and MgO additions
    2022 - SONA FILHO, CELSO R.; CARVALHO, FLAVIO M. de S.; GUEDES-SILVA, CECILIA C.
    Silicon nitride ceramics with SiO2, CaO, and MgO as sintering aids were investigated in view of biomedical applications. In the current study, samples with four different compositions were pressureless sintered at 1750°C for 1 h under a nitrogen atmosphere. The samples were evaluated concerning densification, microstructure, mechanical properties, and in vitro bioactivity. Microstructures with elongated β-Si3N4 grains dispersed in an intergranular phase and with densities from 78.77 to 97.14% of the theoretical density were obtained. Higher contents of SiO2 resulted in the best densification and mechanical properties. Besides, replacements of CaO by MgO in the initial compositions affected Young's modulus and in vitro bioactivity. Considering the samples with relative density higher than 94.14%, those with lower values of Young's modulus had lower SiO2/MgO ratios. After immersion in SBF (Simulated Body Fluid), the samples with high porosity and/or partial replacements of CaO by MgO had their surfaces coated with a layer rich in calcium and phosphorus, morphologically similar to hydroxyapatite. Hence, producing silicon nitride ceramics with the potential to be used as orthopedic implants must consider ideal amounts of additives. In this article, the best combination of mechanical properties and mineralization capability was reached by the composition with low content of MgO, and high content of SiO2 and CaO.