ELIZABETH SEBASTIANA RIBEIRO SOMESSARI

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 10 de 46
  • Resumo IPEN-doc 30120
    Online electron beam monitoring with a diode-based dosimetry system in routine quality control
    2023 - GONCALVES, JOSEMARY A.C.; MANGIAROTTI, ALESSIO; SOMESSARI, ELIZABETH S.R.; NAPOLITANO, CELIA M.; BUENO, CARMEN C.
  • Artigo IPEN-doc 29701
    Integration of corn and cane for ethanol production
    2023 - SILVA, ANA P.M. da; PIETRO, SICA; PIRES, LUCAS de A.N.; SPIRONELLO, LIANDRA; MOTA, LAYNA A.; PEIXOTO, GUSTAVO T.; CALEGARI, RUBENS P.; BASSO, THIAGO O.; TONSO, ALDO; GOMES, MARCELO P.; SOMESSARI, SAMIR L.; DUARTE, HEITOR G.; SOMESSARI, ELIZABETH S.R.; CARVALHO, RENAN DE S.; BAPTISTA, ANTONIO S.
    Recently, in Brazil, corn ethanol industries are being installed and the integration with sugar/energy-cane has been proposed, using bagasse for cogeneration and the juice to dilute the corn. However, this integration may have some limitations, such as the quality of the cane juice and potential contamination by microorganisms brought with the cane from the field. In this article, we first tested the effects of mixing energy cane juice with corn on fermentative parameters. We also assessed the effects of Lactobacilli. contamination on organic acids produced during the fermentation and fermentation parameters and proposed the use of ionizing radiation to replace antibiotics as a disinfection control method. Our results showed that mixing energy cane juice with corn does not have any negative effect on fermentation parameters, including ethanol production. The contamination with Lactobacilli. considerably increased the production of acetic, lactic, and succinic acid, reducing the pH and ethanol content from 89.2 g L-1 in the sterilized treatment to 72.9 g L-1 in the contaminated treatment. Therefore, for the integration between corn and cane to be applied on an industrial scale, it is essential to have effective disinfection before fermentation. Ionizing radiation (20 kGy) virtually disinfected the wort, showing itself to be a promising technology; however, an economic viability study for adopting it in the industry should be carried out.
  • Resumo IPEN-doc 29550
    Preservation of photographic and cinematographic films by electron-beam irradiation
    2022 - VASQUEZ, P.A.S.; NAGAI, M.L.E.; OLIVEIRA, M.J.A.; OTUBO, L.; SOMESSARI, E.S.R.
    The Nuclear and Energy Research Institute – IPEN through the Multipurpose Gamma Irradiation Facility and the Electron Beam Irradiation Facilities has disinfected several tangible cultural collections from the University of São Paulo – USP. Brazilian weather conditions added to the actions of insects and fungi promote biodegradation especially in cellulose-based materials. In this sense, ionizing radiation is an excellent alternative to the traditional preservation process mainly because the biocidal action. Electron beam irradiation also presents new possibilities for processing materials with greater speed, despite having limited penetration. Adequate storage of photographic and cinematographic materials is a challenge for experts from preservation institutions. Contamination by fungi is one of leading causes of problem in this kind of collections. In addition, another common physicochemical degradation affecting cellulose triacetate films causing deacetylation of polymer chain is called “vinegar syndrome”. In this work are presented results of the effect of the electron beam irradiation on photographic and cinematographic films using an electron beam accelerator with energy of 1.5 MeV and beam power of 37.5 kW. Selected film samples were characterized by FTIR-ATR spectroscopy and FEGSEM-EDS microscopy. Samples were irradiated with absorbed dose between 2 kGy and 200 kGy. Irradiated samples were analyzed by UV-Vis spectrophotometry, FEGSEM, thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). Results showed that disinfection by electron beam radiation can be achieved safely applying radiation absorbed doses between 6 kGy to 10 kGy with no significant change or modification of main properties of the constitutive polymeric materials. Electron beam irradiation, due to the effect of crosslinking is presented as an alternative to treat films affected by “vinegar syndrome” applying absorbed dose of 80 kGy in order to increase shelf life of cultural heritage materials.
  • Artigo IPEN-doc 29033
    Transit dose measurements using alanine and diode-based dosimeters
    2022 - GONCALVES, J.A.C.; SOMESSARI, E.S.R.; SOMESSARI, S.L.; BUENO, C.C.
    The growing interest in low-dose (< 100 Gy) radiation processing applications has raised concerns about accurately measuring the absorbed dose in irradiated materials. Depending on the irradiator design, the transit time due to the radioactive source movement (or the product itself) until the stable irradiation position might affect the predicted absorbed dose. This work aims to evaluate the transit dose in a 60Co Gammacell 220-Nordion irradiator, which has radioactive sources settled at the bottom of a lead shielding. When the facility is on, the product and the dosimeter are mechanically guided down to the irradiation position, and hereafter the selected exposure time starts to be counted. At the end of irradiation, both product and dosimeter rise to the initial position enabling them to be gathered by the operator. The product is continuously irradiated at different dose rates during its fall and rise movement, preventing the transit dose from being obtained straightforward. The experimental approach adopted is to assess the transit time, and thus the transit dose, using an online diode-based dosimetry system previously calibrated against reference standard alanine dosimeters. The agreement between the transit doses attained with the diode (0.41 ± 0.02) Gy and alanine (0.38 ± 0.01) Gy validates the method herein proposed.
  • Resumo IPEN-doc 26563
    Mechanical evaluation of PVC films modified by electron beam irradiation
    2011 - CARDOSO, J.R.; MOURA, E.; SOMESSARI, E.S.R.; SILVEIRA, C.G.; PAES, H.A.; SOUZA, C.A.; MANZOLI, J.E.; GERALDO, A.B.C.
    The polyvinyl chloride (PVC) is a technological and low cost polymer. Although this polymer is weather resistant, it presents high sensitivity to high energy irradiation because of the weakness of carbon-chloride bond face to carbon-carbon and carbon-hydrogen bonds [1]. Upon exposure to high energy irradiation, some carbon-chloride bonds are broken to give rise radicals like chlorine and organic chloride that are initiators of two concurrent processes: degradation and crosslinking. The degradation process on PVC is macroscopically observed by discoloration effects, where the material tends to darken or to turn yellow, mainly at a typical sterilization dose of 25 kGy [2]; this process yields hydrogen chloride as a byproduct, it is autocatalytic and it continues after irradiation exposure. By other way, the crosslinking leads to an improvement in thermal resistance and mechanical properties. The aim of this work is to evaluate the mechanical properties of PVC irradiated by electron beam to verify the degradation process. Also, mechanical properties are investigated on styrene grafted PVC by electron beam irradiation using mutual and pre-irradiation methods to verify the mechanical resistance changes of obtained product if grafting process is applied from non-irradiated and from pre-irradiated substrates. The PVC commercial film samples with 210 jam thickness were cut into a dumbbell-shape (gauge length: 25 mm, width: 4.10 mm, area: 0.86 mm2). The grafting media was styrene /butanol-1 mixture in several monomer concentrations (from 10% to 100%). The samples were irradiated on a Job 188 Dynamitron® Electron Beam Accelerator with 1.5 MeV energy. All irradiation procedures were performed in atmosphere air and the irradiation conditions comprised doses from 10 kGy to 100 kGy and dose rates of 2.2 kGy/s and 22.4 kGy/s. The styrene grafted samples were analyzed by gravimetry to determinate the grafting yield; the final values have been averaged from a series of three measurements. The Mid-ATR-FTIR was the spectrophotometer technique used for qualitative/semi-quantitative analysis of grafted samples. The Young's module and tensile strength of pre-irradiated and grafted PVC samples at both methods were measured at a Lloyd LXR tensile tester at a crosshead speed of 10.00 mm/min. We observed the decrease of Young's module and tensile strength with the increase of absorbed dose at pre-irradiated PVC samples, that it indicates degradation process. These mechanical parameters results are discussed to styrene grafted PVC samples.
  • Resumo IPEN-doc 26555
    Effect of ionizing irradiation on tilapia (Oreochromis niloticus) skin
    2011 - FROSE, C.A.P.; MOURA, E.; YAMAGUISHI, R.B.; SOMESSARI, E.S.R.; SILVEIRA, C.G.; LEME, E.; GERALDO, A.B.C.; MANZOLI, J.E.
    The culture of tropical tilapia (Oreochomis niloticus), as a non-native freshwater fish specie in Brazil, have had importance in the last decade due its fast growing, fast reproduction characteristics, high tolerance of climate variations in our country and high disease resistance. The high demand of whole fish or fillets is related to its good taste. Althought, its skin, that represents from 4.5 % to14 % of fish weight, is a byproduct that is generally discared or sold at low cost to feed mills. The general animal skin composition comprises protein, water, minerals and fatty matter where the relative portions of these materials depends of upon animal specie, age, breed, feeding and other animal habits. The putrecible raw animal skins can be chemically and physically treated to make it in non-putrecible stabilized material; it results in a soft and flexible polymeric material. The chemical process to obtain this material generally involves a crosslinking of carboxyl groups or amino groups of skin proteins and the chemical reactive specie [1]. Also, physical process as UV irradiation have been successfully employed to crosslink collagenous biomaterials and thus, improved some mechanical characteristics [2]. The goal of this work was to study the tilapia skins exposed to ionizing irradiation from electron beams. The raw skins and the chemically degreased skins were the studied materials. The tensile strenght and elongation at break were the mechanical parameters evaluated. The optical microscopy was used to evaluate some histological characteristics in irradiated and non-irradiated samples. Also, the polymeric product obtained when skins are treated with oxidizing ions were used to compare some results. The tilapia raw skins were kindly available by APTA, a governmental agribusiness technological agency. These skins were scales free, slighted and frosted. The skins were irradiated in atmosphere air on a Job 188 Dynamitron® Electron Beam Accelerator with 1.5 MeV energy under comprised doses of 20 kGy and 40 kGy and dose rates of 2.2 kGy/s and 7.4 kGy/s. The mechanical parameters were measured at a Lloyd LXR tensile tester at a crosshead speed of 10.00 mm/min. Irradiated samples shows high integrity and high tensile strength in comparison to the polymeric product obtained by oxidizing ions reaction. These results are discussed.
  • Artigo IPEN-doc 28871
    Assessment of bone dose response using ATR-FTIR spectroscopy
    2022 - CASTRO, PEDRO A.A. de; DIAS, DERLY A.; DEL-VALLE, MATHEUS; VELOSO, MARCELO N.; SOMESSARI, ELIZABETH S.R.; ZEZELL, DENISE M.
    The health care application of ionizing radiation has expanded worldwide during the last several decades. While the health impacts of ionizing radiation improved patient care, inaccurate handling of radiation technology is more prone to potential health risks. Therefore, the present study characterizes the bone dose response using bovine femurs from a slaughterhouse. The gamma irradiation was designed into low-doses (0.002, 0.004 and 0.007 kGy) and high-doses (1, 10, 15, 25, 35, 50 and 60 kGy), all samples received independent doses. The combination of FTIR spectroscopy and PLS-DA allows the detection of differences in the control group and the ionizing dose, as well as distinguishing between high and low radiation doses. In this way, our findings contribute to future studies of the dose response to track ionizing radiation effects on biological systems.
  • Resumo IPEN-doc 28643
    Transit dose measurements using alanine and diode-based dosimeters
    2021 - GONCALVES, J.A.C.; SOMESSARI, E.S.R.; NAPOLITANO, C.M.; SOMESSARI, S.L.; BUENO, C.C.
  • Artigo IPEN-doc 27899
    AuCu/TiO2 catalysts prepared using electron beam irradiation for the preferential oxidation of carbon monoxide in hydrogen-rich mixtures
    2021 - ALENCAR, C.S.L.; PAIVA, A.R.N.; SILVA, L.G.A.; SOMESSARI, E.S.R.; VAZ, J.M.; SPINACE, E.V.
    The major part of the world production of hydrogen (H2) is originated from a combination of methane steam reforming and water gas shift reaction resulting in an H2 rich mixture known as reformate gas, which contains about 1% vol (10,000 ppm) of carbon monoxide (CO). The preferential oxidation reaction of CO in H2 rich mixtures (CO PROX) has been considered a very promising process for H2 purification, reducing CO for values below 50 ppm allowing its use in PEMFC Fuel Cells. Au nanoparticles supported on TiO2 (Au/TiO2) catalysts have been shown good activity and selectivity for CO PROX reaction in the temperature range between 20 80 ºC; however, the catalytic activity strongly depends on the preparation method. Also, the addition of Cu to the Au/TiO2 catalyst could increase the activity and selectivity for CO PROX reaction. In this work, AuCu/TiO2 catalysts with composition 0.5%Au0.5%Cu/TiO2 were prepared in a single step using electron beam irradiation, where the Au3+ and Cu2+ ions were dissolved in water/2 propanol solution, the TiO2 support was dispersed and the obtained mixture was irradiated under stirring at room temperature using different dose rates (8 64 kGy s 1) and total doses (144 576 kGy). The catalysts were characterized by energy dispersive X ray analysis, X ray diffraction transmission electron microscopy, temperature programmed reduction and tested for CO PROX reaction. The best result was obtained with a catalyst prepared with a dose rate of 64 kGy s 1 and a total dose of 576 kGy showed a CO conversion of 45% and a CO2 selectivity of 30% at 150 ºC.
  • Artigo IPEN-doc 27386
    Exposure of Deinococcus radiodurans to both static magnetic fields and gamma radiation
    2020 - RIGHI, HENRIETTE; ARRUDA-NETO, JOAO D.T.; GOMEZ, JOSE G.C.; SILVA, LUIZIANA F. da; SOMESSARI, ELIZABETH S.R.; LEMOS, ALINE C.C.
    The extremophilic bacterium Deinococcus radiodurans displays an extraordinary ability to withstand lethal radiation effects, due to its complex mechanisms for both proteome radiation protection and DNA repair. Published results obtained recently at this laboratory show that D. radiodurans submitted to ionizing radiation results in its DNA being shattered into small fragments which, when exposed to a “static electric field’ (SEF), greatly decreases cell viability. These findings motivated the performing of D. radiodurans exposed to gamma radiation, yet exposed to a different exogenous physical agent, “static magnetic fields” (SMF). Cells of D. radiodurans [strain D.r. GY 9613 (R1)] in the exponential phase were submitted to 60Co gamma radiation from a gamma cell. Samples were exposed to doses in the interval 0.5–12.5 kGy, while the control samples were kept next to the irradiation setup. Exposures to SMF were carried out with intensities of 0.08 T and 0.8 T delivered by two settings: (a) a device built up at this laboratory with niobium magnets, delivering 0.08 T, and (b) an electromagnet (Walker Scientific) generating static magnetic fields with intensities from 0.1 to 0.8 T. All samples were placed in a bacteriological incubator at 30 °C for 48 h, and after incubation, a counting of colony forming units was performed. Two sets of cell surviving data were measured, each in triplicate, obtained in independent experiments. A remarkable similarity between the two data sets is revealed, underscoring reproducibility within the 5% range. Appraisal of raw data shows that exposure of irradiated cells to SMF substantially increases their viability. Data interpretation strongly suggests that the increase of D. radiodurans cell viability is a sole magnetic physical effect, driven by a stochastic process, improving the efficiency of the rejoining of DNA fragments, thus increasing cell viability. A type of cut-off dose is identified at 10 kGy, above which the irradiated cellular system loses recovery and the cell survival mechanism collapses.