THENNER SILVA RODRIGUES

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 10 de 14
  • Resumo IPEN-doc 27975
    Controlling the sintering of ceria by shape-controlled synthesis of nanoparticles
    2019 - FONSECA, FABIO C.; MACHADO, MARINA F.S.; MORAES, LETICIA P.R.; RODRIGUES, THENNER S.; KABIR, AHSANUL; MARANI, DEBORA; VAN NONG, NGO; ESPOSITO, VINCENZO
    The influence of surface energy of Gd-doped CeO2 nanometric crystals with different morphologies on mass diffusion mechanisms is studied. Depending on the starting morphology (nanocubes, nanorods, and random nanoparticles) extremely different microstructures, ranging from rapidly densified to thermodynamically stable porous structures. We investigate Gd-doped ceria (10% molar, GDC) both for its relevance in several chemical, environmental and energy technologies, and because the extensive knowledge on diffusion effects ruling this compound. We synthesized GDC as nanocubes (NC) and nanorods (NR) by a hydrothermal method whereas randomly oriented nanoparticles (RD) were obtained by co-precipitation. All samples were measured as single phase GDC powders with narrow nanoparticle size distributions. The high surface area NR exhibit lower green density as compared to NC. Dilatometric analyses revealed that NR have a pronounced linear retraction starting at low temperatures (~200°C) with maximum sintering activity at ~1100°C. High surface energy in NRs leads to a rapid rod to sphere transformation as well as to a rapid densification despite relatively low green density. On the other hand, the solid state diffusion in NCs is significantly inhibited, as confirmed by the highly porous microstructure of sintered samples. The results indicated the possibility of controlling microstructure of GDC by defining the shape of nanoparticles for different application in which dense or stable pores are required.
  • Artigo IPEN-doc 26691
    Lowering the sintering temperature of a SOFC by morphology control of the electrolyte powder
    2019 - MACHADO, M.; MORAES, L.P.R.; RODRIGUES, L.N.; RODRIGUES, T.S.; FONSECA, F.C.
    Solid oxide fuel cells are fabricated by two-step sintering at low temperature by controlling the morphology of the gadolinium-doped cerium oxide (GDC) electrolyte powders. The GDC electrolyte was synthesized by a hydrothermal route to obtain highly reactive nanorods that can fully densify at temperatures around 1150 °C. The developed system consists of the GDC electrolyte support, lanthanum strontium cobalt ferrite (LSCF) cathode and Ni/GDC anode. The electrolyte support was prepared by uniaxial die pressing and sintered at 1150 °C, and fuel cells were obtained by co-sintering electrode layers at the same temperature. The performance of the cell was evaluated in hydrogen at intermediate temperatures (IT). The experimental results indicate that high-performance IT-SOFC can be obtained at low sintering temperatures by controlling the morphology of electrolyte powder.
  • Artigo IPEN-doc 25839
    Tuning diffusion paths in shaped ceria nanocrystals
    2019 - ESPOSITO, VINCENZO; KABIR, AHSANUL; ROSA, MASSIMO; NONG, NGO V.; RODRIGUES, THENNER S.; RODRIGUES, LAYS N.; MACHADO, MARINA F.S.; MORAES, LETICIA P.R.; MARANI, DEBORA; FONSECA, FABIO C.
    Mass diffusion controls material structuring from the atomic to the macro-scale defining properties and functionalities. We show here that surface energy in Ce0.9Gd0.1O3-d shaped nanocrystals, i.e. nanocubes, nanorods and spherical nanoparticles, can control solid state diffusion mechanisms over a long range, leading to extreme microstructural diversity.
  • Artigo IPEN-doc 25672
    Ethanol steam reforming
    2019 - RODRIGUES, THENNER S.; SILVA, FELIPE A. e; CANDIDO, EDUARDO G.; SILVA, ANDERSON G.M. da; GEONMONOND, RAFAEL dos S.; CAMARGO, PEDRO H.C.; LINARDI, MARCELO; FONSECA, FABIO C.
    We reported herein a systematic investigation on how the nature of the support affected the catalytic performances of Rh nanoparticles. The prepared catalysts were denoted as Rh/MxOy, where M corresponded to Ce, Ti, Si, Zn, and Al, and Rh was Rh3+ reduction to Rh nanoparticles on the surface of oxides. This strategy was performed in a single step using urea as a mediator and in the absence of any other stabilizer or capping agent. The Rh nanoparticles displayed relatively similar sizes, shapes, and uniform distribution over the supports, differing only in terms of the nature of the support. This strongly affected the metal–support interaction between Rh nanoparticles and the respective oxides, leading to significant differences in their catalytic performances toward the ethanol steam reforming. Here, not only the catalytic activity (in terms of ethanol conversion) was affected, but both the selectivity and stability were also influenced by the nature of the oxide support. Interestingly, the reaction paths as well as the deactivation profile were completely changed as function of the employed support. Such differences were associated with differences in the oxygen storage, oxygen mobility, and acidity/basicity of the supports. We believe that our results can contribute to the development and understanding of Rh-supported catalysts for the applications toward gas-phase transformations such as the ethanol steam reforming reaction.
  • Resumo IPEN-doc 25391
    Synthesis and characterization of catalysts based on nickel, cerium, and lanthanum supported on biocarbon for ethanol steam reforming
    2018 - FERREIRA, J.C.; CAVALLARI, R.V.; LIMA, N.B.; RODRIGUES, T.S.; BERGAMASCHI, V.S.; SILVA, F.A. e
    Ethanol steam reforming (ESR) is considered asa promising alternative for hydrogen production due to some differentadvantages that include the large availability, relatively low cost, andsuperior reactivity of ethanol as compared to other compounds. Thus, thistechnology is also considered more sustainable and greener as compared to othermethods usually employed for hydrogen production. However, the currentindustrial catalysts suffer from strong deactivation because the extensivecarbon deposition, which limits their performances and utilization. In order toovercome this limitation, we report herein the synthesis of a catalyst based onnickel, cerium and lanthanum supported on activated biocarbon by a microwaveassisted hydrothermal method. In this method, we first performed a hydrothermalactivation of the biocarbon support at 120 °C using nitric acid (0.3 M) in areactor coupled to a microwave source aiming the formation of acid groups atthe surface of our carbonaceous matrix. In a next step, the adsorption of La3+,Ce3+, and Ni3+ onto the activated biocarbon was performed by the addition ofLa(NO3)3.6H2O, Ce(NO3)3.6H2O, and Ni(NO3)3.6H2O in the suspension containingthe activated biocarbon and potassium thiosulfate for stabilization (pH 8.0) at75 °C. The obtained catalyst was then characterized by scanning electronmicroscopy, X-ray dispersive spectroscopy, X-ray diffraction, temperatureprogramed reduction, and surface area by the BET method. After this step, the catalystwas then evaluated towards the ESR, in which 100 % of ethanol conversion wasobserved with the formation of only H2 (~ 60%) and CO2 (ESR products) and COand CH4 as byproducts (both in low concentrations), indicating a goodselectivity for ESR. Good stability was also achieved with no significant lossof activity even after 24 hours of reaction at 550 °C. The reactants and thereaction products were analyzed by gas chromatograph (Agilent 7890A), equippedwith a thermal conductivity detector (TCD) and a flame ionization detector(FID) connected in series.
  • Artigo IPEN-doc 25390
    Preparação de catalisadores de níquel e cério suportados em carvão de coco
    2018 - FERREIRA, JOAO C.; CAVALLARI, ROGER V.; SILVA, FELIPE A. e; RODRIGUES, THENNER S.; SILVA, JULIO C.M.; BERGAMASCHI, VANDERLEI S.
    O carvão de coco foi ativado pelo processo hidrotermal assistido por microondas (HMO) usando ácido nítrico (2,42 M) nas condições de temperatura de 120 ºC, patamar de 45 minutos, rampa de aquecimento de 10 ºC min-1 e pressão de 3,0 kgf / cm2. Na caracterização usaram-se métodos analíticos como: espectroscopia Raman, medidas de área superficial (BET), análise térmica (TG), difração de raios X (DRX), microscopia eletrônica de varredura (MEV), espectroscopia de energia dispersiva (EDS) e redução à temperatura programada (TPR). Os catalisadores foram avaliados na reforma a vapor do etanol objetivando a formação de hidrogênio. Foram observadas boas atividades catalíticas com conversão completa do etanol e formação predominante de produtos de reforma (H2 e CO2) e CO e CH4 como subprodutos e em baixas concentrações, indicando uma boa seletividade e estabilidade para a reação de reforma a vapor do etanol com a manutenção total de atividade mesmo após 24 horas de reação a 550 °C.
  • Resumo IPEN-doc 25382
    Synthesis and characterization of catalysts based on nickel, cerium, and lanthanum supported on biocarbon for ethanol steam reforming
    2018 - FERREIRA, J.C.; CAVALLARI, R.V.; SILVA, F.A. e; RODRIGUES, T.S.; BERGAMASCHI, V.S.
    Ethanol steam reforming (ESR) is considered asa promising alternative for hydrogen production due to some differentadvantages that include the large availability, relatively low cost, andsuperior reactivity of ethanol as compared to other compounds. Thus, thistechnology is also considered more sustainable and greener as compared to othermethods usually employed for hydrogen production. However, the currentindustrial catalysts suffer from strong deactivation because the extensivecarbon deposition, which limits their performances and utilization. In order toovercome this limitation, we report herein the synthesis of a catalyst based onnickel, cerium and lanthanum supported on activated biocarbon by a microwaveassisted hydrothermal method. In this method, we first performed a hydrothermalactivation of the biocarbon support at 120 °C using nitric acid (0.3 M) in areactor coupled to a microwave source aiming the formation of acid groups atthe surface of our carbonaceous matrix. In a next step, the adsorption of La3+,Ce3+, and Ni3+ onto the activated biocarbon was performed by the addition ofLa(NO3)3.6H2O, Ce(NO3)3.6H2O, and Ni(NO3)3.6H2O in the suspension containingthe activated biocarbon and potassium thiosulfate for stabilization (pH 8.0) at75 °C. The obtained catalyst was then characterized by scanning electronmicroscopy, X-ray dispersive spectroscopy, X-ray diffraction, temperatureprogramed reduction, and surface area by the BET method. After this step, the catalystwas then evaluated towards the ESR, in which 100 % of ethanol conversion wasobserved with the formation of only H2 (~ 60%) and CO2 (ESR products) and COand CH4 as byproducts (both in low concentrations), indicating a goodselectivity for ESR. Good stability was also achieved with no significant lossof activity even after 24 hours of reaction at 550 °C. The reactants and thereaction products were analyzed by gas chromatograph (Agilent 7890A), equippedwith a thermal conductivity detector (TCD) and a flame ionization detector(FID) connected in series.
  • Resumo IPEN-doc 25165
    Nanopartículas metálicas suportadas em óxidos sólidos comerciais
    2018 - SILVA, FELIPE A. e; RODRIGUES, THENNER S.
  • Resumo IPEN-doc 25164
  • Artigo IPEN-doc 25155
    Sub-15 nm CeO2 nanowires as an efficient nonnoble metal catalyst in the room-temperature oxidation of aniline
    2018 - SILVA, ANDERSON G.M. da; BATALHA, DANIEL C.; RODRIGUES, THENNER S.; CANDIDO, EDUARDO G.; LUZ, SULUSMON C.; FREITAS, ISABEL C. de; FONSECA, FABIO C.; OLIVEIRA, DANIELA C. de; TAYLOR, JASON G.; TORRESI, SUSANA I.C. de; CAMARGO, PEDRO H.C.; FAJARDO, HUMBERTO V.
    We described herein the facile synthesis of sub-15 nm CeO2 nanowires based on a hydrothermal method without the use of any capping/stabilizing agent, in which an oriented attachment mechanism took place during the CeO2 nanowire formation. The synthesis of sub-15 nm CeO2 nanowires could be achieved on relatively large scales (∼2.6 grams of nanowires per batch), in high yields (>94%), and at low cost. To date, there are only a limited number of successful attempts towards the synthesis of CeO2 nanowires with such small diameters, and the reported protocols are typically limited to low amounts. The nanowires displayed uniform shapes and sizes, high surface areas, an increased number of oxygen defects sites, and a high proportion of Ce3+/Ce4+ surface species. These features make them promising candidates for oxidation reactions. To this end, we employed the selective oxidation of aniline as a model transformation. The sub-15 nm CeO2 nanowires catalyzed the selective synthesis of nitrosobenzene (up to 98% selectivity) from aniline at room temperature using H2O2 as the oxidant. The effect of solvent and temperature during the catalytic reaction was investigated. We found that such parameters played an important role in the control of the selectivity. The improved catalytic activities observed for the sub-15 nm nanowires could be explained by: i) the uniform morphology with a typical dimension of 11 ± 2 nm in width, which provides higher specific surface areas relative to those of conventional catalysts; ii) the significant concentration of oxygen vacancies and high proportion of Ce3+/Ce4+ species at the surface that represent highly active sites towards oxidation reactions; iii) the crystal growth along the (110) highly catalytically active crystallographic directions, and iv) the mesoporous surface which is easily accessible by liquid substrates. The results reported herein demonstrated high activities under ambient conditions, provided novel insights into selectivities, and may inspire novel metal oxide-based catalysts with desired performances.