SAJID FAROOQ

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 6 de 6
  • Artigo IPEN-doc 29718
    Thermo-optical performance of bare laser-synthesized TiN nanofluids for direct absorption solar collector applications
    2023 - FAROOQ, SAJID; VITAL, CAIO V.P.; TIKHONOWSKI, GLEB; POPOV, ANTON A.; KLIMENTOV, SERGEY M.; MALAGON, LUIS A.G.; ARAUJO, RENATO E. de; KABASHIN, ANDREI V.; RATIVA, DIEGO
    Titanium nitride (TiN) nanoparticles (NPs) look very promising for solar energy harvesting owing to a strong plasmonic absorption with the maximum in the near-infrared range. However, the synthesis of TiN nanofluids is very challenging as one has to combine the plasmonic feature and long-term colloidal stability to withstand harsh conditions of direct absorption solar collectors (DASC). Here, we explore solutions of bare (ligand free) TiN NPs synthesized by pulsed laser ablation in acetone as the nanofluid. We show that such NPs are low size-dispersed (mean size 25 nm) and exhibit a broad absorption peak around 700 nm, while their negative charge ensures a prolonged electrostatic stabilization of solutions. Solar weighted absorption coefficient of such TiN nanofluids reaches 95.7% at very low volume fractions (1.0 × 10−5), while nanofluid temperature can be increased up to 29 °C under 1.25-sun illumination. Our data evidence that the thermal efficiency of a DASC using TiN nanofluid is 80% higher compared to Au-based counterparts. The recorded high photothermal efficiency and excellent colloidal stability of TiN nanofluids promises a major advancement of DASC technology, while laser-ablative synthesis can offer easy scalability and relative cost-efficiency required for the implementation of systems for solar energy harvesting.
  • Artigo IPEN-doc 29715
    Selecting plasmonic nanoshells for colorimetric sensors
    2023 - BALTAR, RAPHAEL M.S.M.; FAROOQ, SAJID; ARAUJO, RENATO E. de
    In this work, the use of gold and silver nanoshells was evaluated as a starting point for the establishment of colorimetric sensor platforms. The sensitivity and linearity of the nanoplatforms (SiO2 core–metallic shell nanoparticles) were assessed under the influence of the nanoshell configuration, color space, and light source illuminant. A computational procedure for selecting high-performance plasmonic colorimetric sensor platforms is described. The evaluation methodology involves considering five different color spaces and 15 different color components. By exploring crucial figures of merit for sensing, the performance of the plasmonic nanoplatforms was evaluated, exploring Mie theory. We determined that gold nanoshells are highly efficient on colorimetric sensing, while silver nanoshells are a better choice for spectroscopic sensors. Plasmonic nanoplatforms based on nanoshells with 10 nm SiO2 core radii and 5 nm thick Au shells presented sensitivity values up to 4.70 RIU−1 , considering the hue angle of the HSV color space. Color variation of up to 40% was observed, due to the adsorption of a 10 nm thick molecular layer on the gold nanoshell surface. In the search for advances in colorimetric biosensors, the optimization approach used in this work can be extended to different nanostructures.
  • Artigo IPEN-doc 29510
    Selecting high-performance gold nanorods for photothermal conversion
    2022 - PEDROSA, TULIO de L.; FAROOQ, SAJID; ARAUJO, RENATO E. de
    In this work, we establish a new paradigm on identifying optimal arbitrarily shaped metallic nanostructures for photothermal applications. Crucial thermo-optical parameters that rule plasmonic heating are appraised, exploring a nanoparticle size-dependence approach. Our results indicate two distinct figures of merit for the optimization of metallic nanoheaters, under both non-cumulative femtosecond and continuum laser excitation. As a case study, gold nanorods are evaluated for infrared photothermal conversion in water, and the influence of the particle length and diameter are depicted. For non-cumulative femtosecond pulses, efficient photothermal conversion is observed for gold nanorods of small volumes. For continuous wave (CW) excitation at 800 nm and 1064 nm, the optimal gold nanorod dimensions (in water) are, respectively, 90 × 25nm and 150 × 30 nm. Figure of Merit (FoM) variations up to 700% were found considering structures with the same peak wavelength. The effect of collective heating is also appraised. The designing of high-performance plasmonic nanoparticles, based on quantifying FoM, allows a rational use of nanoheaters for localized photothermal applications.
  • Artigo IPEN-doc 29086
    Tailoring the scattering response of optical nanocircuits using modular assembly
    2022 - FAROOQ, SAJID; SHAFIQUE, SHAREEN; AHSAN, ZISHAN; CARDOZO, OLAVO; WALI, FAIZ
    Owing to the localized plasmon resonance of an ensemble of interacting plasmonic nanoparticles (NPs), there has been a tremendous drive to conceptualize complex optical nanocircuits with versatile functionalities. In comparison to modern research, there is still not a sufficient level of sophistication to treat the nanostructures as lumped circuits that can be adjusted into complex systems on the basis of a metatronic touchstone. Here, we present the design, assembly, and characterization of single relatively complex photonic nanocircuits by accurately positioning several metallic and dielectric nanoparticles acting as modular lumped elements. In this research, Au NPs along with silica NPs were used to compare the proficiency and precision of our lumped circuit model analytically. On increasing the size of an individual Au NP, the spectral peak resonance not only modifies but also causes more scattering efficiency which increases the fringe capacitance linearly and decreases the nanoinductance of lumped circuit element. The NPs-based assembly induced the required spectral resonance ascribed by simple circuit methods and are depicted to be actively reconfigurable by tuning the direction or polarization of input signals. Our work demonstrates a vital step toward developing the modern modular designing tools of complex electronic circuits into nanophotonic-related applications.
  • Artigo IPEN-doc 29000
    High performance blended nanofluid based on gold nanorods chain for harvesting solar radiation
    2023 - FAROOQ, SAJID; RATIVA, DIEGO; SAID, ZAFAR; ARAUJO, RENATO E. de
    Colloids composed of metallic nanoparticles are promising working fluids for solar radiation harvesting using Direct Absorption Solar Collectors (DASC), due to a high thermal conductivity characteristic and a broad optical absorption that can be tuned to match the solar spectrum. Recently, different studies report gold nanorod (Au-NR) chains for biosensing and photothermal applications, which have broadband and high absorption cross-section and potential possibilities to orientate the nanoparticle using electromagnetic fields. Moreover, colloids with nanoparticles blended configuration show an efficient solar radiation absorption characteristics. Here, working fluids for DASC based on gold nanorod chains in an unblended and blended configuration are evaluated using numerical simulations. The results indicate that the solar absorption increases proportional to the size of the Au-NR assembly, and the best configuration is obtained for a tetramer structure. By using different blended arrangements such as single Au monomers, dimers, trimmers, and tetramers nanorods, it is possible to obtain solar weighted absorption coefficients close to an ideal solar thermal collector, even obtained at low volume fraction (1×10(−5)). Moreover, the results show an enhancement of the temperature of 58.45 °C for tetramer compared with a monomer structure, both under one sun excitation. Therefore, the Au-NR assembly shows a high potentiality to be explored as a high-performance working fluid for solar thermal collectors.
  • Artigo IPEN-doc 28859
    Optimizing and quantifying gold nanospheres based on LSPR label-free biosensor for dengue diagnosis
    2022 - FAROOQ, SAJID; WALI, FAIZ; ZEZELL, DENISE M.; ARAUJO, RENATO E. de; RATIVA, DIEGO
    The localized surface plasmon resonance (LSPR) due to light–particle interaction and its dependence on the surrounding medium have been widely manipulated for sensing applications. The sensing efficiency is governed by the refractive index-based sensitivity (ηRIS) and the full width half maximum (FWHM) of the LSPR spectra. Thereby, a sensor with high precision must possess both requisites: an effective ηRIS and a narrow FWHM of plasmon spectrum. Moreover, complex nanostructures are used for molecular sensing applications due to their good ηRIS values but without considering the wide-band nature of the LSPR spectrum, which decreases the detection limit of the plasmonic sensor. In this article, a novel, facile and label-free solution-based LSPR immunosensor was elaborated based upon LSPR features such as extinction spectrum and localized field enhancement. We used a 3D full-wave field analysis to evaluate the optical properties and to optimize the appropriate size of spherical-shaped gold nanoparticles (Au NPs). We found a change in Au NPs’ radius from 5 nm to 50 nm, and an increase in spectral resonance peak depicted as a red-shift from 520 nm to 552 nm. Using this fact, important parameters that can be attributed to the LSPR sensor performance, namely the molecular sensitivity, FWHM, ηRIS, and figure of merit (FoM), were evaluated. Moreover, computational simulations were used to assess the optimized size (radius = 30 nm) of Au NPs with high FoM (2.3) and sharp FWHM (44 nm). On the evaluation of the platform as a label-free molecular sensor, Campbell’s model was performed, indicating an effective peak shift in the adsorption of the dielectric layer around the Au NP surface. For practical realization, we present an LSPR sensor platform for the identification of dengue NS1 antigens. The results present the system’s ability to identify dengue NS1 antigen concentrations with the limit of quantification measured to be 0.07 μg/mL (1.50 nM), evidence that the optimization approach used for the solution-based LSPR sensor provides a new paradigm for engineering immunosensor platforms.