RAYNARA MARIA SILVA JACOVONE

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 10 de 24
  • Resumo IPEN-doc 29480
    Reduced graphene oxide obtained by gamma radiation to produce screen printed glucose biosensor
    2022 - SAKATA, SOLANGE; JACOVONE, RAYNARA M.S.; DUARTE, MIGUEL; GARCIA, RAFAEL; ANGNES, LUCIO
    Screen printed biosensor has attracted attention as point care device due to its fast and accurate response in a compact portable platform. Due the high electrical carrier mobility, reduced graphene oxide (rGO) has been used to modify the working electrode surface and increase the biosensor sensibility. However, there are some disadvantages during the reduction of graphene oxide that include the use of chemical reductants that need to be removed after the reaction and the toxic residues. The purification usually requires tedious steps and a lot of efforts to recover the nanomaterial. In this work screen printed carbon electrode (SPCE) was modified using rGO produced by gamma radiation. Graphene oxide (GO) was prepared by modified Hummers and the reduction was performed in a water/isopropanol solution and inert medium. Sample was irradiated in the Multipurpose Gamma Irradiation Facility at Radiation Technology Center from Nuclear and Energy Research Institute (IPEN/CNEN-SP), a category IV gamma irradiator by the IAEA classification under the radiation dose at 80,0 kGy. rGO characterization was performed by X-Ray Diffraction (XRD). From the XRD patterns: the 2θ the peak located at 11o shift to 23o, demonstrating the reduction of GO to rGO. The decrease of the distance between layers was attributed on partial remove of the oxygen groups from GO. For the glucose biosensor preparation, first of all, the SPCE (Metrohm, model 6. 1208. 110) was modified by drop-coating rGO solution and dried at room temperature for 24h. Then, for Glucose Oxidase (GOx) immobilization, the carboxylic groups from rGO were activated using N-hydroxysuccinimide (NHS) and 1-Ethyl-3-(3-dimethyalaminopropyl) carbodiimide (EDC) for 30 min at room temperature, followed by adding GOx 10KU from A. niger Type II (5mg/mL). The solution was incubated at 4oC overnight. SEM images showed GOx onto SPCE surface and the electrocatalysis of GOx toward glucose was measured to confirm the enzymatic activity. For electrochemical studies, cyclic voltammetry was carried out in a Portable Potentiostat model 910 PSTAT mini, Metrohm and PSTAT software. The fabricated amperiometric biosensor detects glucose ranged from 1mM to 5mM with LOD of 0.9 mM at 0.70V. Moreover, the biosensor exhibited repeatability, reproducibility and practicability. This study showed that rGO synthesized by gamma radiation without any further purification is a simple and sustainable approach to fabricate electrode for biosensors.
  • Resumo IPEN-doc 29478
    The influence of gamma radiation doses on rGO/Ni for energy storage applications
    2022 - GARCIA, RAFAEL H.L.; CARNEIRO, FELIPE W.; JACOVONE, RAYNARA M.S.; SAKATA, SOLANGE K.; ANGNES, LUCIO
    Metallic nanoparticles (MN) have been the subject of intense research in the last decades because of their high catalytic activity, associated with its large surface-to-volume ratio. However, it is difficult to obtain pure active metal nanoparticles surfaces, since its contamination and aggregation frequently result in deactivation and loss of catalytic activities. MN immobilization can minimize these effects. Thermal, mechanical, and electrical properties of reduced graphene oxide (rGO) make this material an excellent candidate for MN support for batteries and supercapacitors. The production of metallic nanoparticles on rGO surface based on gamma radiation allows less formation of residual impurities, absence of reducing agents, uniform mass production, no aggregation and low costs. Herein, we demonstrated a green and efficient one-step, gamma radiation-based method for Ni/rGO production. Graphene oxide (GO) was prepared by modified Hummers method. Ni+2 and graphene oxide reduction were performed in water/isopropanol solution (1:1) under inert medium. Samples were irradiated in the Multipurpose Gamma Irradiation Facility at CETER/IPEN/CNEN-SP, a category IV gamma irradiator by the IAEA classification, in radiations doses of 20, 40, and 80 kGy, at 10 kGy/h. From X-ray diffraction, the correlation between radiation doses and crystallite size was evaluated. For supercapacitor studies, cyclic voltammetry was carried out in a screen printed carbon electrode (SPCE) in K₄[Fe(CN)₆]. The working electrode was modified with produced rGO-Ni 80 kGy, Pt wire was used as counter and Ag/AgCl as reference electrode. Experiments were performed in KOH 1.0 M. Results showed that produced Ni/rGO has good potential to be used in electrochemical devices such as supercapacitors or batteries.
  • Capítulo IPEN-doc 28983
    Redução do oxido de grafeno via radiação ionizante
    2022 - SAKATA, SOLANGE K.; JACOVONE, RAYNARA M.S.
    A radiação ionizante, o que inclui a radiação gama e feixe de elétrons, é considerada como “síntese verde” e “ambientalmente amigável” e vem se destacando como uma promissora rota sintética para obter óxido de grafeno reduzido. Essas reações ocorrem em meio aquoso, a temperatura e pressão ambiente, sem o uso de redutores tóxicos e geração de resíduos químicos tóxicos. Neste capítulo é apresentado uma compilação de estudos sobre redução do óxido de grafeno via radiação ionizante reportados na literatura na última década. A redução parcial do óxido de grafeno produz óxido de grafeno reduzido (rOG), um nanomaterial que combina as propriedades do grafeno e do óxido de grafeno: uma excelente condutividade elétrica e térmica e os demais grupos de oxigênio que permitem sua funcionalização. Na literatura, são descritas diversas rotas sintéticas para produzir rOG: por método químico, térmico, eletroquímico, radiação não ionizante e biocatalíticas.
  • Resumo IPEN-doc 28448
    Uso do Kahoot! como ferramenta avaliativa em um ambiente interdisciplinar e remoto
    2021 - JACOVONE, RAYNARA M.S.; JESUS, JULIANA M.S. de; SAKATA, SOLANGE K.; RICARDO, ELIO C.
    O presente estudo visa apresentar as primeiras impressões observadas após o uso da plataforma on-line Kahoot! como ferramenta avaliativa do processo de aprendizagem ativa da disciplina IPN 0034 – Fundamentos dos Nanomateriais, integrante do conjunto de disciplinas optativas da graduação disponibilizadas no Instituto de Pesquisas Energéticas e Nucleares (IPEN). O curso baseia-se na fundamentação de conceitos aplicados ao estudo de nanomateriais, tais como síntese, caracterização e aplicação dessa tecnologia no âmbito científico e industrial. No ano atual, a disciplina, que ainda está em curso, é ministrada por quatro professores e quatro monitores do Programa de Aperfeiçoamento de Ensino (PAE), com 48 alunos dos seguintes cursos: Bacharelado em Biotecnologia (19%), Engenharia Química (19%), Química (17%), bacharelado em Física Médica (4%), além de alunos de outras Engenharias, Odontologia e Ciências Contábeis. Neste contexto, foram previamente selecionadas, dentro do plano da disciplina, a inserção de ferramentas e estratégias educacionais que buscam promover um aprendizado ativo. A heterogeneidade do público-alvo atribui ao curso um caráter multidisciplinar, além de motivar a atual necessidade de aprimorar a interação professor-aluno em um ambiente remoto. A título de exemplo, a disciplina em estudo propõem o uso de ferramentas como Kahoot! Mentimeter , uso de mapas conceituais e apresentações de posters na plataforma on-line Wonder . Entre as vantagens da plataforma Kahoot!, destaca-se a obtenção do desempenho imediato dos alunos. O questionário foi desenvolvido com questões de múltipla escolha, sendo apenas uma das alternativas correta, sendo aplicado ao término de cada aula, pelos monitores da disciplina. A hipótese que está sendo avaliada, após a execução de cinco aulas, refere-se à observação de que, ao disponibilizar material para consulta/estudo, antes da aula, os alunos tiveram um maior/melhor desempenho no Kahoot! As evidências obtidas até o momento indicam que em aulas que foram apresentadas questões referentes ao conteúdo pré-aula, cerca de 74% a 96% das questões foram respondidas corretamente. Porém, nas aulas sem material prévio, o máximo de acertos foi de 48%. Esses dados consideram a participação de 48 a 44 alunos, sem considerar o tempo para resposta das questões, mas apenas o que foi pontuado como certo e errado. Essa distinção de desempenho aponta para a importância do aluno estudar ou ter um contato prévio com o conteúdo que será dado em sala. Destaca-se que a investigação da efetividade de uma ferramenta no decorrer do curso permite ao professor aprimorar ou, até mesmo, rever suas escolhas didáticas propostas no plano de aula, o qual não deve ser engessado, mas sim dinâmico, em resposta ao grupo de alunos e suas particularidades. Portanto, é possível identificar que a aplicação de material pré-sala e o uso do Kahoot! está permitindo avaliar de forma efetiva o desempenho dos alunos, oferecendo indicadores para avaliar também as práticas do professor na disciplina em questão.
  • Resumo IPEN-doc 28447
    Screen printed electrode modified with reduced graphene oxide obtained by ɤ radiation for levonorgestrel detection
    2021 - JACOVONE, RAYNARA M.S.; JESUS, JULIANA M.S. de; TEIXEIRA, ANTONIO C.S.C.; SAKATA, SOLANGE K.
    INTRODUCTION Screen printed electrodes (SPE) have attracted attention due to their fast and accurate response, high sensibility, specificity, and portable platforms. To increase their electrical carrier mobility and sensibility, the working electrode surface has been modified using reduced graphene oxide (rGO) [1]. In the present work, gamma radiation reduced Graphene Oxide (GO) to produce rGO in a sustainable method that avoids toxic reagents and the production of hazardous chemical residues [2]. Levonorgestrel (LNG) is a synthetic contraceptive hormone of worldwide concern, being harmful to aquatic organisms, even at low concentrations, e.g., 0.024 nmmol L-1 [3]. METHODOLOGY Reduced graphene oxide was obtained using GO (10 mg mL-1) dispersed in a water/isopropanol. The sample was irradiated in the Multipurpose Gamma Irradiation Facility at CETER/IPEN/CNEN-SP, at a dose rate of 10 kGy h-1 and 80.0 kGy in inert conditions. The SPE was modified by drop casting 10 μL of the rGO solution and dried at room temperature. The rGO-SPE was characterized by Raman spectroscopy and the electrochemical behavior of LNG was investigated using cyclic voltammetry (CV) in phosphate buffered saline (PBS) medium (pH 7.0) within the oxidation window 0.0-1.0 V and 25 mV s-1 (Fig. 1). RESULTS The Raman spectrum showed D (1.347 cm-1) e G (1.594 cm-1) bands for both rGO-SPE and SPE. The ID/IG ratio was 0.85 and 1.40 for SPE and rGO-SPE, respectively. For rGO-SPE, cyclic voltammograms showed a reversible behavior in K4Fe(CN)6 [2 mmol L-1] and in the presence of LNG [6410-9 mol L-1], anode inflection was observed at 0.6 V, associated with the non-reversible oxidation reaction of LNG. CONCLUSIONS The surface of the rGO-SPE was uniform, being the ID/IG ratio for the covered electrode higher than that exhibited by the uncovered one. This electrode presented electrochemical response to LNG, even at low concentrations, thus proving its application as an electrochemical sensor for the LNG hormone.
  • Resumo IPEN-doc 27663
    The synthesis of palladium nanoparticles by electron beam into graphene oxide and its electrochemical behavior
    2020 - CARNEIRO, F.W.; KAWABATA, V.J.; JACOVONE, R.M.; ANGNES, L.; GARCIA, R.H.; SAKATA, S.K.
    In this work, graphene oxide (GO) was synthesized by the modified Hummers method and was used as support for palladium nanoparticles to study its electrochemical behavior. The main objective was the incorporation of Pd on the graphene oxide by the electron beam irradiation at 40kGy and 80kGy doses. The GO-Pd nanocomposite was characterized by thermogravimetry analysis (TGA), X-ray diffraction (XRD), electron transmission microscopy (TEM), zeta potential analysis and cyclic voltammetry (CV). The results were satisfactory, indicating success in incorporating the metal in the GO surface. CV studies were conducted using screen printed electrode modified with nanocomposite, SPE/GO-Pd, at a scan rate of 50 mVs-1, potentials range from -0.5 V until 1.0 V in KCl medium (0.05 mol.L-1) adding aliquots of 4 mmol L ?1 ferricyanide solution and its results showed a linear increase in the current. It can therefore be inferred that palladium /graphene oxide nanocomposites have a potential for sensors.
  • Resumo IPEN-doc 27662
    The synthesis of magnetite/reduced graphene oxide nanocomposites by electron beam for eletrocatalysis application
    2020 - KAWABATA, V.J.; CARNEIRO, F.W.; JACOVONE, R.M.; ALMEIDA, E.V. de; GARCIA, R.H.; CORIO, P.; SAKATA, S.K.
    This work presents the synthesis of magnetite/reduced graphene oxide nanocomposites (MrGO) via electron beam. The graphene oxide (GO) was prepared according to a modified Hummers’ method and it was characterized using X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Raman spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), zeta potential analysis and cyclic voltammetry (CV) were used in order to investigate the structure and properties of MGO. The data showed GO was reduced using 40 kGy. The CV was performed by applying a MrGO layer on the working electrode of a screen-printed carbon electrode, at a scan rate of 50 mVs-1, potentials range from -0.5 V until 1.0 V in KCl medium (0.05 mol.L-1) adding aliquots of 4 mmol L ?1 ferrocyanide solution. Its results show a similar electrochemical response from both samples (maximum current: 45?A). It can therefore be inferred that magnetite/reduced graphene oxide nanocomposites have a potential for electrocatalysis application.
  • Resumo IPEN-doc 27645
    Chemical characterization of bacteria
    2020 - JACOVONE, R.M.; COSTA, C.A.; SAKATA, S.K.
    Atomic force microscopy -Infrared spectroscopy (AFM-IR) is a combined technique that allows nanoscale chemical characterization of biological–materials interactions. In this work, AFM-IR was used to map Escherichia coli in graphene oxide /silver nanocomposite (Ag/rGO). In Escherichia coli, it was observed absorption bands corresponding to amine I at 1660 cm-1 and amide II at 1550 cm-1 from proteins. On the other hand, when these bacteria were exposed to (Ag/rGO) typical absorption bands from carbonyl/carboxyl groups around 1745 and carbon bond around 1620 were also detected, showing the antibacterial activities of (Ag/rGO). The conventional atomic force microscope was used to elucidate the morphologic changes that occurred by internalization of nanocomposite into the bacteria. Atomic force microscopy -Infrared spectroscopy (AFM-IR) is a combined technique that allows nanoscale chemical characterization of biological–materials interactions. In this work, AFM-IR was used to map Escherichia coli in graphene oxide /silver nanocomposite (Ag/rGO). In Escherichia coli, it was observed absorption bands corresponding to amine I at 1660 cm-1 and amide II at 1550 cm-1 from proteins. On the other hand, when these bacteria were exposed to (Ag/rGO) typical absorption bands from carbonyl/carboxyl groups around 1745 cm-1 and carbon bond around 1620 cm-1 were also detected, showing the antibacterial activities of (Ag/rGO). The conventional atomic force microscope was used to elucidate the morphologic changes that occurred by internalization of nanocomposite into the bacteria.
  • Dissertação IPEN-doc 27503
    Estudo do comportamento eletroquímico do óxido de grafeno reduzido/Ni sintetizado por radiação ionizante
    2020 - JACOVONE, RAYNARA M.S.
    O presente trabalho descreve um processo atraente e verde para obtenção de nanocompósitos de rOG-Ni utilizando a radiação ionizante: radiação gama e feixe de elétrons. Os experimentos foram realizados, em meio aquoso, a temperatura e pressão ambiente e sem a geração de resíduos tóxicos e subprodutos indesejáveis. O OG foi esfoliado em água/isopropanol (1:1) e submetido à radiação gama nas doses de 20, 40 e 80 kGy e taxa de dose de 10 kGy/h para a obtenção do rOG. Para a síntese do rOG/Ni os experimentos foram realizados na presença de Ni(NH3)6Cl2. O rOG foi caracterizado por difração de Raios X (DRX), espectroscopia Raman e de fotoelétrons por Raios X (XPS) e o rOG-Ni por DRX e microscopia eletrônica de transmissão (MET). Os resultados de espectroscopia Raman e XPS confirmaram a formação do rOG e que o grau de redução foi proporcional ao aumento da dose aplicada sobre o óxido de grafeno. A morfologia do nanocompósito rOG-Ni foi avaliada por MET e pode-se observar nanopartículas de níquel uniformemente distribuídas sobre as folhas de rOG. Histogramas de tamanho médio de NPs indicaram que para a amostra sintetizadas por raios gama a 80 kGy, obteve-se nanopartículas menores quando comparada com a amostra irradiada a 40 kGy, sugerindo que, quanto maior a dose aplicada, menor o tamanho da nanopartícula formada. A comparar os resultados de DRX para o rOG-Ni obtido pelas duas técnicas de radiação ionizante, nas mesmas doses aplicadas, foi observado que para o nanocompósito sintetizado por radiação gama houve a redução do óxido de grafeno simultaneamente a formação das nanopartículas de níquel, enquanto que para o feixe de elétrons houve apenas a redução dos íons de níquel levando a formação da nanopartícula. Para estudo do comportamento eletroquímico, eletrodos do tipo screen printed electrode (SPE) foram modificados com o rOG e rOG-Ni sintetizados por radiação gama. Os voltamogramas cíclicos obtidos apresentaram um comportamento reversível para todas as amostras na presença de K4Fe(CN)6, e o valor da corrente de pico anódica (Ipa), mostrou-se diretamente proporcional ao aumento da dose aplicada sobre o nanomaterial em seu processo de redução.
  • Artigo IPEN-doc 26718
    Antibacterial activity of silver/reduced graphene oxide nanocomposite synthesized by sustainable process
    2019 - JACOVONE, RAYNARA M.S.; SOARES, JAQUELINE J.S.; SOUSA, THAINA S.; SILVA, FLAVIA R.O.; GARCIA, RAFAEL H.L.; NGUYEN, HANG N.; RODRIGUES, DEBORA F.; SAKATA, SOLANGE K.
    Traditional methods to incorporate metals into graphene oxide (GO) usually require toxic reagents or high temperatures. This study proposes an innovative and sustainable method to incorporate silver (Ag) into graphene oxide using electron beam and evaluate its antibacterial activities. The method is based on green synthesis, without toxic reagents or hazardous wastes, and can be carried out at room temperature, in short reaction times. To synthesize the Ag/rGO nanocomposite, a water/isopropanol solution with dispersed graphene oxide and silver nitrate was submitted to a dose range from 150 to 400 kGy. The product was characterized by thermogravimetry analysis, X-ray diffraction and transmission electron microscopy. The antibacterial activity of Ag/rGO was observed against Gram-negative Escherichia coli by plate count method and atomic force microscopy. The results showed that concentrations as low as 100 lg/mL of produced Ag/rGO were enough to inactivate the cells.