JOSE ROBERTO BERRETTA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 10 de 41
  • Resumo IPEN-doc 30299
    Scintillation characteristics of pure cesium iodide crystals and doped with Tl+, Br- and Li+ ions for use as radiation detectors
    2023 - PEREIRA, MARIA da C.C.; MADI FILHO, TUFIC; BERRETTA, JOSE R.; ALVES, JOAO P. da S.
    In recent years, more attention has been devoted in the discovery of new scintillators or to improve the characteristics of known scintillators. Today inorganic scintillators are exploited in many new fields such as positron emission tomography (PET) computerized X-ray tomography, space physics and astronomy. Inorganic crystals are the scintillators most commonly used for the detection of gamma rays, X-rays and thermal neutrons. CsI:Tl, CsI:Br, CsI:Li and pure CsI crystals were grown in our laboratory using the vertical Bridgman technique. The concentrations of dopants ranged from 10-1M to 10-4M. The intentional introduction of a certain ion into a crystal depends on physical and chemical properties, that is, the dopant and the matrix. In physical terms, there is a limitation on the volume of ions that can in principle be introduced into the crystal lattice. Furthermore, any substitutional arrangement must preserve the electrical neutrality of the crystal. In chemical terms, one must consider which dopant will accumulate in the phase in which its introduction results in a smaller increase in the free energy of the system. This parameter is represented by the impurity segregation coefficient. It was observed that the wavelength of maximum luminescence emission is characteristic for each crystal. Pure cesium iodide crystal showed maximum intensity of luminescence at the wavelength of 320 nm. The CsI:Tl crystal showed luminescence at a wavelength of 540 nm. CsI:Br and CsI:Li crystals showed maximum luminescence around 420 nm. Analyses were carried out to evaluate the scintillators concerning neutron radiation from AmBe source, with energy range of 1 MeV to 12 MeV. The activity of the AmBe source was 1Ci Am. The fluency was 2.6 x 106 neutrons / second. The crystals response gamma radiation was evaluated in the energy range of 355keV to 1333 keV. In this work, the main optical properties of pure and doped CsI with different ions were studied in order to understand the scintillation mechanism and its application in devices that use the principle of scintillation to detect radiation.
  • Resumo IPEN-doc 30152
    Response of CsI:Pb scintillator crystal to neutron radiation
    2023 - PEREIRA, MARIA da C.C.; MADI FILHO, TUFIC; BERRETTA, JOSE R.; ALVES, JOAO P. da S.
    The helium-3 world crisis requires a development of new methods of neutron detection to replace commonly used 3He proportional counters. In the past decades, great effort was made to developed efficient and fast scintillators to detect radiation.[1] These detectors should, then, be carefully characterized both experimentally and by means of advanced simulation code. Ideally, the detector should have the capability to separate neutron and gamma induced events either by amplitude or through pulse shape differences. As neutron sources also generate gamma radiation, which can interfere with the measurement, it is necessary that the detector be able to discriminate the presence of such radiation. Considerable progress has been achieved to develop new inorganic scintillators, in particular increasing the light output and decreasing the decay time by optimized doping. Crystals may be found to suit neutron detection. In this report, we will present the results of the study of lead doped cesium iodide crystals (CsI:Pb) grown in our laboratory, using the vertical Bridgman technique. The concentration of the lead doping element (Pb) was studied in the range 5x10-4M to 10-2M. The crystals grown were subjected to annealing (heat treatment). In this procedure, vacuum of 10-6 mbar and continuous temperature of 350°C, for 24 hours, were employed. In response to neutron radiation, an AmBe source with energy range of 1 MeV to 12 MeV was used. The activity of the AmBe source was 1Ci Am. The fluency was 2.6 x 106 neutrons/second. The operating voltage of the photomultiplier tube was 1300 V; the accumulation time in the counting process was 600 s and 1800 s. The scintillator crystals used were cut with dimensions of 20 mm diameter and 10 mm height. The Monte Carlo method was used to determine the neutron flux arriving in the detector and the calculated values were obtained by means of MCNP code.
  • Tese IPEN-doc 29777
    Desenvolvimento de detector de nêutrons utilizando cristal cintilador de CsI dopado com Li
    2023 - BERRETTA, JOSE R.
    A detecção da radiação e a medida de suas propriedades são requisitos para o desenvolvimento de todas as áreas da tecnologia nuclear e suas aplicações. Entre as suas aplicações, destacam-se: a pesquisa científica, a aplicação médica, a operação de reatores, a área de proteção radiológica e as aplicações industriais. A detecção dos nêutrons não é trivial, tendo em vista a falta de cargas elétricas dessas partículas e a peculiaridade de suas interações com a matéria. Outra dificuldade na detecção de nêutrons é que a radiação emitida pela fonte de nêutrons está sempre acompanhada de radiações de outras naturezas, o que dificulta a discriminação eletrônica dos impulsos gerados pelos nêutrons, dos gerados por outras radiações. Neste trabalho, foram estudados cristais baseados em CsI para aplicação como detectores de nêutrons usando como dopante o Li, avaliando a resposta de detecção de nêutrons em diferentes concentrações de dopantes (entre 10-1 M a 10-4 M). A reação do nêutron com o Li é dada como: n+6Li→3H(2,75 MeV) + 4He(2,05 MeV) com σ= 940 b. Foram feitos estudos com nêutrons provenientes da fonte de AmBe incidindo em blocos de parafina e avaliando a resposta dos detectores aos nêutrons termalizados incidentes no cristal. Um cristal puro de CsI foi usado como referência para avaliar o ganho de eficiência com o aumento da concentração de dopante na matriz CsI. O código MCNP foi usado para avaliar qual a melhor espessura do cristal cintilador para a obtenção de maior eficiência de detecção de nêutrons
  • Artigo IPEN-doc 28850
    Determination of the bromine, manganese and antimony in Nicotiana tabacum solanaceae by using the neutron activation analysis technique
    2022 - MADI FILHO, TUFIC; FERREIRA, ELSON B.; BERRETTA, JOSE R.; PEREIRA, MARIA da C.C.
    Tobacco addiction has been mentioned as a leading cause of preventable illnesses and premature disability. Smoking is the main cause of lung cancer and one of the factors that most contribute to the occurrence of heart diseases, among others. The herbaceous species Nicotiana tabacum is a plant of the solanaceae family used for tobacco production. Some authors have conducted research about heavy metals and the toxicity of tobacco. It is, frequently, found in low concentrations in the ground, and superficial and underground waters, even though they do not have environmental anthropogenic contributions. However, with the increase of industrial activities and mining together with the agrochemical use of contaminated organic and inorganic fertilizers, an alteration of the geochemical cycle occurs. As a consequence, the natural flow of these materials increases and is released into the biosphere, where they are often accumulated in the superior layer of the ground, accessible to the roots of the plants. During planting and plant development, fertilizers and insecticides, including organochlorines and organophosphates, are used; consequently, the smoke from cigarette smoking presents various toxic substances, such as bromine (Br), manganese (Mn) and antimony (Sb), elements studied in this work. The procedures for the preparation of the samples were carried out in our laboratories and submitted to irradiation with thermal neutrons at Nuclear and Energy Research Institute (IPEN/CNEN-SP), in the Atomic Energy Institute IEA-R1 research reactor. The irradiated material was, then, analyzed by gamma spectrometry, using a high purity germanium detector (HPGe).
  • Capítulo IPEN-doc 28372
    Characteristics of PB2+ doped CsI matrix under gamma and neutron excitations
    2021 - PEREIRA, MARIA da C.C.; MADI FILHO, TUFIC; BERRETTA, JOSE R.; TOMAZ, LUCAS F.
    In recent years, there has been an increasing interest in finding new fast scintillating material or improve the characteristics of known scintillatorsfor the demand of high energy physics, industrial and nuclear medical applications. Divalent lead ions Pb2+ built in some crystal structures are efficient emission centers and their applications in scintillators wereand arestill the reason of an intensive study of emission properties of different compounds containing these ions. In this context, the crystals of Pb2+ doped CsI matrix were grown by the vertical Bridgman techniqueandsubjected to annealing in vacuum of 10-6 mbar and constanttemperatureof 350°C, for 24 hours, and then they were employed. To evaluate the response of the CsI:Pb scintillator crystal to gamma radiation, radioactive sources of 137Cs (662 keV), 60Co (1173 keV and 1333 keV), 22Na (511 keV and 1275 keV) and 133Ba (355 keV) wereused. The operating voltage of the photomultiplier was 2700 V for the detection of gamma rays and the accumulation time in the counting process was 600 s. The scintillator response to neutron radiation from a radioactive source of AmBe with energy range of 1 to 12 MeV was available. The activity of the AmBe source was 1 Ci Am. The emission ratewas 2.2x 106 neutrons/ second. The operating voltage of the photomultiplier tube was 1300 V. The accumulation time in the counting process was 600 s. With the results obtained, it may be observed that the crystals are sensitive to these radiations.
  • Artigo IPEN-doc 28214
    Development of neutron detector using Li-doped CsI scintillator crystal
    2021 - BERRETTA, J.B.; PEREIRA, M.C.C.
  • Artigo IPEN-doc 27897
    Growth and optical characteristics of the CsI:Li scintillator crystal for use as radiation detector
    2021 - PEREIRA, M.C.C.; FILHO, T.M.; TOMAZ, L.F.; BERRETTA, J.R.
    Materials capable of converting ionizing radiation into light photons are called scintillators, some have specific efficiencies for certain applications and types of radiation, e.g. gamma, X-ray, alpha, beta and neutrons. CsI:Tl and NaI:Tl crystals are commonly found in the market because they have several applications, but few studies have been done on lithium doped cesium iodide crystal (CsI:Li). The lithium element, in this crystal used as a dopant, is also exploited as a converter for neutron detection, as it has a shock section of 940 barns for thermal neutrons. The study of the CsI:Li crystal is convenient considering the natural abundance of the lithium element with 7.5%, besides the interest in having a low cost national scintillator material, with an opportunity to search for the response of a detector for different types of radiation. The CsI:Li crystal was grown with molar concentration 10-4 to 10-1, using the vertical Bridgman technique. The parameters involved in the growth process were investigated. The transmittance was evaluated in the spectral region from 190 nm to 1100 nm. Luminescence emission spectra for the CsI:Li crystal were evaluated by photometric analysis of the crystal stimulated with a 137Cs (662 keV) source in front of the coupled sample at the monochromator input. The crystals showed maximum luminescence intensity at the wavelength of 420 nm. It was evaluated the response of the scintillators, when excited with gamma radiation of 241Am, 133Ba, 22Na, 137Cs, 60Co and neutron radiation from the AmBe source, with energy range of 1 MeV to 12 Mev.
  • Artigo IPEN-doc 27183
    Total and partial loss of coolant experiments in an instrumented fuel assembly of IEA-R1 research reactor
    2020 - MAPRELIAN, EDUARDO; TORRES, WALMIR M.; BELCHIOR JUNIOR, ANTONIO; UMBEHAUN, PEDRO E.; BERRETTA, JOSE R.; SABUNDJIAN, GAIANE
    The safety of nuclear facilities has been a growing global concern, mainly after the Fukushima nuclear accident. Studies on nuclear research reactor accidents such as the Loss of Coolant Accident (LOCA), many times considered a design basis accident, are important for ensure the integrity of the plant. A LOCA may lead to the partial or complete uncovering of the fuel assemblies and it is necessary to assure the decay heat removal as a safety condition. This work aimed to perform, in a safe way, partial and complete uncovering experiments for an Instrumented Fuel Assembly (IFA), in order to measure and compare the actual fuel temperatures behavior for LOCA in similar conditions to research reactors. A test section for experimental simulation of Loss of Coolant Accident named STAR was designed and built. The IFA was irradiated in the IEA-R1 core and positioned in the STAR, which was totally immersed in the reactor pool. Thermocouples were installed in the IFA to measure the clad and fluid temperatures in several axial and radial positions. Experiments were carried out for five levels of uncovering of IFA, being one complete uncovering and four partial uncovering, in two different conditions of decay heat. It was observed that the cases of complete uncovering of the IFA were the most critical ones, that is, those cases presented higher clad temperatures when compared with partial uncovering cases, for the specific conditions of heat decay intensity and dissipation analyzed. The maximum temperatures reached in all experiments were quite below the fuel blister temperature, which is around 500 °C. The STAR has proven to be a safe and reliable experimental apparatus for conducting loss of coolant experiments.
  • Resumo IPEN-doc 27085
    The use of the neutron activation analysis technique to determine heavy metals in Nicotiana tabacum solanaceae
    2018 - MADI FILHO, TUFIC; FERREIRA, ELSON B.; PEREIRA, MARIA da C.C.; BERRETTA, JOSE R.
    Tobacco addiction has been mentioned as a leading cause of preventable illnesses and premature disability and tobacco smoking is the main cause of lung cancer and one of the factors that most contribute to the occurrence of heart diseases, among others. The herbaceous species Nicotiana tabacum is a plant of the solanaceae family used for tobacco production. Some authors have researched about heavy metals and the toxicity of tobacco. Heavy metals are frequently found in low concentrations in ground, superficial and underground waters, even though it does not have environmental anthropogenic contributions. However, with the increase of the industrial activities and mining and the agrochemical use of contaminated organic and inorganic fertilizers, an alteration of the geochemical cycle occurs. As a consequence, the natural flow of heavy metals increases the release of these elements into the biosphere, where they are frequently accumulated in the superior layer of the ground, accessible to the roots of the plants. Traces of available heavy metals may be found in surface and subsurface aquatic systems and soils, even when there is no anthropogenic influence on the environment, and they frequently accumulate in the upper layer of the soil, where they are accessible to the roots of the plants. Except for the exclusion species, most plant species that grow on soil contaminated by heavy metals cannot avoid the absorption of these elements, but only limit their translocation. During planting and plant development, fertilizers and insecticides, including organochlorines and organophosphates, are used and the smoke from cigarette smoking presents various toxic substances, including heavy metals such as Chromium (Cr) and Manganese (Mn). The samples preparation procedures were carried out in our laboratories and submitted to the irradiation with thermal neutrons in the IPEN/CNEN-SP, in the IEA-R1 research reactor. The irradiated material was analyzed by gamma spectrometry using a high purity germanium detector (HPGe).
  • Artigo IPEN-doc 26850
    Optical properties and radiation response of Li ion-doped CsI scintillator crystal
    2019 - PEREIRA, MARIA da C.C.; MADI FILHO, TUFIC; BERRETTA, JOSE R.; TOMAZ, LUCAS F.; MADI, MIRIAM N.
    Scintillators are materials that convert the energy of ionizing radiation into a flash of light. Due to the existence of different types of scintillators, they are classified into three groups according to their physicochemical characteristics, namely, inorganic, organic and gaseous scintillators. Among the inorganic crystals, the most frequently used as scintillator consist of alkali metals, in particular alkaline iodides. Scintillation materials have many applications, for instance in medical imaging, security, physics, biology, non-destructive inspection and medicine. In this study, lithium doped CsI scintillator crystals were grown using the vertical Bridgman technique. The concentration of the lithium doping element (Li) studied was 10-4 M to 10-1 M. Analyses were carried out to evaluate the developed scintillators with regard to luminescence emission and optical transmittance. The luminescence emission spectra of these crystals were measured with a monochromator for gamma radiation from 137Cs source excitation. The determination of the dopant distribution along the crystalline axis allowed the identification of the region with Li concentration uniformity, which is the region of the crystalline volume indicated for use as a radiation detector. The crystals were excited with neutron radiation from AmBe source, with the energy range of 1 MeV to 12 MeV. As neutron sources also generate gamma radiation, which can interfere with the measurement, it is necessary that the detector be able to discriminate the presence of such radiation. Accordingly, experiments were performed using gamma radiation in the energy range of 59 keV to 1333 keV in order to verify the ability of the detector to discriminate the presence of different types of radiation.