TAMIRES WATANABE

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 7 de 7
  • Artigo IPEN-doc 29688
    An adsorption agent based on chitosan–zeolite composite
    2023 - ARAUJO, LEANDRO G. de; MEDEIROS, VINICIUS L.; GUARNIERI, GUILHERME de P.; SILVA, DANILO A. da; WATANABE, TAMIRES; MARUMO, JULIO T.; NERY, JOSE G.
    In this article, we present a chitosan–zeolite composite, which was synthesized and used as an adsorbent material for caesium (Cs) removal from aqueous media and real liquid radioactive organic waste (LROW). The compound was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy techniques. The physicochemical characterization indicates the production of a composite. Adsorption experiments were first performed using the prepared solutions contaminated with Cs using full factorial design with two variables of interest: initial Cs concentration (Cs0) and adsorbent dosage (mg L−1 ). The results indicated a high caesium removal rate with removal values above 93% and adsorption capacity of up to 10 mg g−1 . With the best experimental conditions according to our experimental domain, time was evaluated and equilibrium was reached in 180 min. Finally, the adsorbent material was tested as an adsorbent for Cs, Am, and U from LROW. When in contact with LORW, the removal rates (%) were 21.51 (137Cs), 26.39 (241Am), and 20.26 (U (total)). Although lower, this material indicated that it has the potential to be used for multi-elemental adsorption.
  • Artigo IPEN-doc 29048
    Uranium biosorption by hydroxyapatite and bone meal
    2022 - WATANABE, TAMIRES; GUILHEN, SABINE N.; MARUMO, JULIO T.; SOUZA, RODRIGO P. de; ARAUJO, LEANDRO G. de
    Biosorption has been examined for the treatment of aqueous solutions containing uranium, a radiotoxic pollutant. Nevertheless, the evaluation of the role of process variables by experimental design on the use of hydroxyapatite and bone meal as biosorbents for uranium has not yet been previously addressed. In this study, the effects of adsorbent dosage (M), initial uranium concentrations ([U]0), and solution pH were investigated, using a two-level factorial design and response surface analysis. The experiments were performed in batch, with [U]0 of 100 and 500 mg L−1, pH 3 and 5, and adsorbent/uranium solution ratios of 5 and 15 g L−1. Contact time was fixed at 24 h. Removal rates were higher than 88%, with a maximum of 99% in optimized conditions. [U]0 and M were found to be the most influential variables in U removal in terms of adsorption capacity (q). The experiments revealed that bone meal holds higher adsorption capacity (49.87 mg g−1) and achieved the highest uranium removal (~ 100%) when compared to hydroxyapatite (q = 49.20 mg g−1, removal = 98.5%). The highest value of q for both biomaterials was obtained for [U]0 = 500 mg L−1, pH 3, and M = 5 g L−1. Concerning the removal percentage, bone meal achieved the best performance for [U]0 = 500 mg L−1, pH 3, and M = 15 g L−1. Further experiments were made with real radioactive waste, resulting in a high uranium adsorption capacity for both materials, with 22.11 mg g−1 for hydroxyapatite and 22.08 mg g−1 for bone meal, achieving uranium removal efficiencies higher than 99%.
  • Artigo IPEN-doc 28879
    Biosorption of uranium from aqueous solutions by Azolla sp. and Limnobium laevigatum
    2022 - ARAUJO, LEANDRO G. de; VIEIRA, LUDMILA C.; CANEVESI, RAFAEL L.S.; SILVA, EDSON A. da; WATANABE, TAMIRES; FERREIRA, RAFAEL V. de P.; MARUMO, JULIO T.
    The main goal of this study was to assess alternatives to the current challenges on environmental quality and circular economy. The former is here addressed by the treatment of radioactively contaminated solutions, and the latter by using abundant and low-cost biomass. In this paper, we examine the biosorption of hexavalent uranium (U(VI)) in a batch system using the macrophytes Limnobium laevigatum and Azolla sp. by three operational parameters: biomass dose, metal ion concentration, and contact time. Simulated solutions were firstly addressed with two biomasses, followed by studies with real liquid organic radioactive waste (LORW) with Azolla sp. The batch experiments were carried out by mixing 0.20 g biomass in 10 mL of the prepared solution or LORW. The total contact time employed for the determination of the equilibrium times was 240 min, and the initial U(VI) concentration was 0.63 mmol L−1. The equilibrium times were 15 min for L. laevigatum and 30 min for Azolla sp. respectively. A wide range of initial U(VI) concentrations (0.25–36 mmol L−1) was then used to assess the adsorption capacity of each macrophyte. Isotherm models validated the adsorption performance of the biosorption process. Azolla sp. presented a much higher U(VI) uptake (0.474 mmol g−1) compared to L. laevigatum (0.026 mmol g−1). When in contact with LORW, Azolla sp. removed much less uranium, indicating an adsorption capacity of 0.010 mmol g−1. In conclusion, both biomasses, especially Azolla sp., can be used in the treatment of uranium-contaminated solutions.
  • Artigo IPEN-doc 28854
    Role of point of zero charge in the adsorption of cationic textile dye on standard biochars from aqueous solutions
    2022 - GUILHEN, SABINE N.; WATANABE, TAMIRES; SILVA, THALITA T.; ROVANI, SUZIMARA; MARUMO, JULIO T.; TENORIO, JORGE A.S.; MASEK, ONDREJ; ARAUJO, LEANDRO G. de
    The point of zero charge (PZC) is an inherent electrokinetic property of biochars (BC). It influences the adsorption process under certain pH conditions. Herein, we report the method of determination of the PZC values of ten standard BCs. We used the salt addition method to select the BCs with suitable properties for methylene blue (MB) removal from aqueous solutions. The standard BCs were obtained by pyrolyzing five different biomasses at two distinct temperatures (550°C and 700°C). The BCs derived from rice husk (pHPZC at 7.22 and 7.64 for RH550 and RH700, respectively) and softwood pellets (pHPZC at 6.57 and 6.78 for SWP500 and SWP700, respectively) were selected for their compatibility with cationic dyes such as MB. Results from adsorption experiments indicated the potential use of the RH biochar as an adsorbent for the removal of MB from aqueous solutions. The removal efficiencies were 68.83% and 71.97% for RH550 and RH700, respectively. Considerably low values were obtained for SWP550 and SWP700 (21.61% and 22.84%, respectively). Equilibrium was achieved at 2 h for RH550 and 1 h for RH700, and the adsorption kinetics for the RH BCs could be described by a pseudo-second order equation. The results revealed that even when produced under comparable conditions, BCs obtained from different feedstocks exhibited different cationic dye removing abilities. BCs optimized for the removal of cationic or anionic dyes can be easily engineered by appropriately matching the feedstock with the processing conditions.
  • Resumo IPEN-doc 28390
    Biossorção de urânio por meio de hidroxiapatita e farinha de osso
    2021 - WATANABE, TAMIRES; MARUMO, JULIO T.; ARAUJO, LEANDRO G. de
  • Artigo IPEN-doc 27978
    Uranium biosorption by hydroxyapatite and bone meal
    2021 - WATANABE, TAMIRES; GUILHEN, SABINE N.; MARUMO, JULIO T.; ARAUJO, LEANDRO G. de
    Biosorption has been widely examined for the treatment of aqueous solutions containing uranium, a radiotoxic pollutant. The use of hydroxyapatite and bone meal as potential biosorbents in the removal of uranium (U) from aqueous solutions has not yet been previously addressed. In this work, the efficiency of these biosorbents in the removal of U was investigated according to their adsorption removal capacities. Surface transformations in both materials were observed after U adsorption by scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM/EDS). The biomass/U solution ratio was kept at 0.1 g/5 mL. Contact times for the batch experiments were 15, 30, 60, 120, and 180 min, and the concentration of U tested was 680 mg L-1. The equilibrium was achieved in less than 15 min for both materials. The morphological characteristics of each biomass, before and after biosorption experiments were analyzed. Bone meal highlighted slightly superior adsorption results in terms of maximum capacity (qmax = 33.83 mg g-1), compared to hydroxyapatite (qmax = 33.36 mg g-1), with the removal percentages being also similar, 99.97 and 98.57 %, respectively. The results so far indicate that these materials are potential biosorbents for the treatment of uranium-contaminated solutions, especially liquid radioactive waste.
  • Resumo IPEN-doc 27532
    Biossorção de urânio por meio de hidroxiapatita e farinha de osso
    2020 - WATANABE, TAMIRES; MARUMO, JULIO T.; ARAUJO, LEANDRO G. de