Yeast-TiO2 biotemplate for oxytetracycline solar photodecomposition

Carregando...
Imagem de Miniatura
Data
2020
Data de publicação:
Orientador
Título da Revista
ISSN da Revista
Título do Volume
É parte de
É parte de
É parte de
Journal of Materials Science and Chemical Engineering
Exportar
Mendeley
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The detection of the pharmaceutical compounds used in human and veterinary medicine is in several environmental matrices (surface waters, effluents, groundwater, soils, and sediments), and such presence promotes the resistance bacteria development, making them ineffective in some diseases treatment. The research project promotes the TiO2 synthesis using yeast culture as biotemplate, the step followed by the microstructure characterization with surface area enhancement; such properties are responsible for the improvement of solar photodecomposition processes of the veterinary antibiotic oxytetracycline. In such simple and standard process conditions the system reaches about 84% of removal percentage with a better agreement with the pseudo-first-order with the Pearson coefficient in the range from 0.82 to 0.94 and K1 = 0.035 M−1∙s−1. The degradation rate constant increased with the increasing initial Yeast-TiO2 dosage until the maximum mass of 0.1 g or with the decreasing of initial oxytetracycline concentration. The solar light used as a sustainable irradiation source is abundant and low cost in tropical countries, perfect to be applied in water treatment to decompose the pharmaceuticals pollutants, as the veterinarian antibiotics. The study demonstrates that solar photodecomposition is an efficient treatment technology for the removal of antibiotics from polluted water and provides insightful information on the potential practical application of this technology to treat contaminated water, possibly also in rural, distant areas.

Como referenciar
ORTIZ, NILCE; NASCIMENTO, LUCIA; MAICHIN, FERNANDA; AZEVEDO, IZABELA R.L.C.; VIEIRA, MARILIA G. Yeast-TiO2 biotemplate for oxytetracycline solar photodecomposition. Journal of Materials Science and Chemical Engineering, v. 8, n. 7, p. 12-26, 2020. DOI: 10.4236/msce.2020.87002. Disponível em: http://repositorio.ipen.br/handle/123456789/31801. Acesso em: 26 Apr 2024.
Esta referência é gerada automaticamente de acordo com as normas do estilo IPEN/SP (ABNT NBR 6023) e recomenda-se uma verificação final e ajustes caso necessário.

Agência de fomento
Coleções