Identification of enamel demineralization using high performance convolutional neural network
dc.contributor.author | CARAMEL-JUVINO, AMANDA | pt_BR |
dc.contributor.author | FAROOQ, SAJID | pt_BR |
dc.contributor.author | ROMANO, MARIANA | pt_BR |
dc.contributor.author | ZEZELL, DENISE M. | pt_BR |
dc.coverage | Internacional | pt_BR |
dc.creator.evento | SBFOTON INTERNATIONAL OPTICS AND PHOTONICS CONFERENCE | pt_BR |
dc.date.accessioned | 2023-01-26T15:39:35Z | |
dc.date.available | 2023-01-26T15:39:35Z | |
dc.date.evento | October 13-15, 2022 | pt_BR |
dc.description.abstract | Here, we traces use segmentation and convolutional neural network (CNN) to trace, diagnose and quantify enamel demineralization for research. The preprocessing, histograms based methods are used to enhance the contrast and equalize the brightness through the scanning electron microscope images. Our result evidence that the deep learning based CNN model is highly efficient to process the dental image to achieve high accuracy of enamel demineralization and presents promising outcomes with optimal precision. | pt_BR |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | pt_BR |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | pt_BR |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | pt_BR |
dc.description.sponsorshipID | FAPESP: 17/50332-0 | pt_BR |
dc.description.sponsorshipID | CNPq: INCT 465763/2014-6; Sisfoton MCTI 440228/2021-2 | pt_BR |
dc.description.sponsorshipID | CAPES: PROCAD 001; 88881.068505/2014-01 | pt_BR |
dc.event.sigla | SBFOTON IOPC | pt_BR |
dc.identifier.citation | CARAMEL-JUVINO, AMANDA; FAROOQ, SAJID; ROMANO, MARIANA; ZEZELL, DENISE M. Identification of enamel demineralization using high performance convolutional neural network. In: SBFOTON INTERNATIONAL OPTICS AND PHOTONICS CONFERENCE, October 13-15, 2022, Recife, PE. <b>Proceedings...</b> Piscataway, NJ, USA: IEEE, 2022. DOI: <a href="https://dx.doi.org/10.1109/SBFotonIOPC54450.2022.9992381">10.1109/SBFotonIOPC54450.2022.9992381</a>. Disponível em: http://repositorio.ipen.br/handle/123456789/33668. | |
dc.identifier.doi | 10.1109/SBFotonIOPC54450.2022.9992381 | pt_BR |
dc.identifier.orcid | 0000-0001-7404-9606 | pt_BR |
dc.identifier.orcid | https://orcid.org/0000-0001-7404-9606 | |
dc.identifier.uri | http://repositorio.ipen.br/handle/123456789/33668 | |
dc.local | Piscataway, NJ, USA | pt_BR |
dc.local.evento | Recife, PE | pt_BR |
dc.publisher | IEEE | pt_BR |
dc.rights | openAccess | pt_BR |
dc.subject | neural networks | |
dc.subject | dentistry | |
dc.subject | enamels | |
dc.subject | demineralization | |
dc.subject | learning | |
dc.title | Identification of enamel demineralization using high performance convolutional neural network | pt_BR |
dc.type | Texto completo de evento | pt_BR |
dspace.entity.type | Publication | |
ipen.autor | SAJID FAROOQ | |
ipen.autor | DENISE MARIA ZEZELL | |
ipen.autor | AMANDA CARAMEL JUVINO | |
ipen.codigoautor | 15722 | |
ipen.codigoautor | 693 | |
ipen.codigoautor | 15033 | |
ipen.contributor.ipenauthor | SAJID FAROOQ | |
ipen.contributor.ipenauthor | DENISE MARIA ZEZELL | |
ipen.contributor.ipenauthor | AMANDA CARAMEL JUVINO | |
ipen.date.recebimento | 23-01 | |
ipen.event.datapadronizada | 2022 | pt_BR |
ipen.identifier.ipendoc | 29302 | pt_BR |
ipen.notas.internas | Proceedings | pt_BR |
ipen.type.genre | Artigo | |
relation.isAuthorOfPublication | 60d3fba4-40e1-482c-9eda-4530bc63fecb | |
relation.isAuthorOfPublication | a565f8ad-3432-4891-98c0-a587f497db21 | |
relation.isAuthorOfPublication | 2b3b78e2-0d00-4b2d-b29c-648c0e4b7f54 | |
relation.isAuthorOfPublication.latestForDiscovery | 2b3b78e2-0d00-4b2d-b29c-648c0e4b7f54 | |
sigepi.autor.atividade | ZEZELL, DENISE M.:693:920:N | pt_BR |
sigepi.autor.atividade | FAROOQ, SAJID:15722:920:N | pt_BR |
sigepi.autor.atividade | CARAMEL-JUVINO, AMANDA:15033:920:S | pt_BR |