Submissões Recentes

Nenhuma Miniatura disponível
Artigo IPEN-doc 30372

Use of collagen and auricular cartilage in bioengineering

2024 - MASSIMINO, LIVIA C.; MARTINS, VIRGINIA da C.A.; VULCANI, VALCINIR A.S.; OLIVEIRA, EVERTON L. de; ANDREETA, MARIANE B.; BONAGAMBA, TITO J.; KLINGBEIL, MARIA F.G.; MATHOR, MONICA B.; PLEPIS, ANA M. de G.

The aim of this study was the development of collagen and collagen/auricular cartilage scaffolds for application in dermal regeneration. Collagen was obtained from bovine tendon by a 72 h-long treatment, while bovine auricular cartilage was treated for 24 h and divided into two parts, external (perichondrium, E) and internal (elastic cartilage, I). The scaffolds were prepared by mixing collagen (C) with the internal part (CI) or the external part (CE) in a 3:1 ratio. Differential scanning calorimetry, scanning electron microscopy (SEM) analysis, microcomputed tomography imaging (micro-CT) and swelling degree were used to characterize the scaffolds. Cytotoxicity, cell adhesion, and cell proliferation assays were performed using the cell line NIH/3T3. All samples presented a similar denaturation temperature (Td) around 48 degrees C, while CE presented a second Td at 51.2 degrees C. SEM micrographs showed superficial pores in all scaffolds and micro-CT exhibited interconnected pore spaces with porosity above 60% (sizes between 47 and 149 mu m). The order of swelling was CE < CI < C and the scaffolds did not present cytotoxicity, showing attachment rates above 75%-all samples showed a similar pattern of proliferation until 168 h, whereas CI tended to decrease after this time. The scaffolds were easily obtained, biocompatible and had adequate morphology for cell growth. All samples showed high adhesion, whereas collagen-only and collagen/external part scaffolds presented a better cell proliferation rate and would be indicated for possible use in dermal regeneration.

Nenhuma Miniatura disponível
Artigo IPEN-doc 30371

Calculation of the budget of uncertainty on measurements size nanoparticles using dynamic light scattering

2024 - GERALDES, ADRIANA N.; ROSERO, WILMMER A.A.; ROSTELATO, MARIA E.C.M.; SARKIS, JORGE E.S.

Accurate nanoparticle characterization is essential since it can significantly affect its physicochemical and biological properties. Among physicochemical properties used to characterize nanomaterials, size and size distribution are essential and should be assessed before surveying poisonousness or biocompatibility. Several methods are suitable to evaluate these characteristics including the dynamic light scattering. The aims of the present paper were to propose a methodology to measure nanoparticle size and present the estimation of the particle size uncertainty using the dynamic light scattering technique. The reliability of measurements was ensured by a series of handling precautions and quality criteria for good measurements to be applied for methodology validation using reference material polyvinylpyrrolidone coated silver nanoparticles. The identification and quantification of input quantities to the measurement uncertainties were estimated. The uncertainty concerning the equipment was 1.2% while the repeatability obtained was 1.4%, within the range of values stipulated in the reference standard (less than 5%). The relative standard uncertainties of trueness and repeatability were below the thresholds defined by the International Organization for Standardization. The result of the expanded uncertainty was 3.9% with 95% coverage probability for the reference material.

Nenhuma Miniatura disponível
Artigo IPEN-doc 30370

Assessment of the IEA-R1 nuclear reactor using a nonstandard fuel assembly with six fuel plates of the Brazilian Multipurpose Reactor

2024 - SOARES, HUMBERTO V.; TORRES, WALMIR M.; UMBEHAUN, PEDRO E.; BELCHIOR, ANTONIO; ANDRADE, DELVONEI A. de

In order to qualify the fuel plates of the Brazilian Multipurpose Reactor (RMB), a nonstandard Instrumented Fuel Assembly (IFA) was designed and is being constructed to be burned in the IEA-R1 nuclear research reactor. IFA has fuel plates of different uranium densities (10 fixed fuel plates of 3.0 gU/cm3 – IEA-R1 standard; 6 removable fuel plates of 3.7 gU/cm3 – RMB; and a central aluminum plate). This paper is the first step to demonstrate that IEA-R1 can safely operate with this IFA. To verify the IFA thermal behavior inside the IEA-R1 core during reactor operation and certify the no power peaks occurrence, the power distribution was calculated for each fuel plate. LEOPARD and HAMMER-TECHNION codes were utilized to calculate the core thermal neutron cross section and CITATION code to calculate the core power distribution. Calculations were performed for 5 MW reactor power considering the IFA placed in a core peripheral position. The RMB fuel plates average power was 4.73 % higher compared to IEA-R1 fuel plates. This was expected due to the higher density of uranium in these plates. The power of each IFA fuel plate was compared with a fresh IEA-R1 Fuel Assembly (FA) at the same core position. The power in the IFA hottest plate is only 6.79 % higher than the correspondent IEA-R1 fuel plate. The IFA power distribution was also compared to the hottest FA of the core. The power of each IFA fuel plate was below its correspondent hottest FA fuel plate. In addition, the total IFA power is 18.40 % less than the hottest FA in the core. No significant power peaks occur in the IFA during operation. As future works, thermal–hydraulic calculations will be performed considering this calculated power distribution and no hot spots are expected.

Nenhuma Miniatura disponível
Artigo IPEN-doc 30369

Analysis of the luminescent emission during flash sintering of 8YSZ and 20SDC ceramics

2024 - MUCCILLO, REGINALDO; DIAZ, JULIO C.C.A.; MUCCILLO, ELIANA N.S.

Light-emission data were collected before, during, and after the occurrence of the flash event in pressureless electric-field-assisted (flash) sintering experiments on ZrO2: 8 mol% Y2O3 (8YSZ) and CeO2: 20 mol% Sm2O3 (20SDC) ceramic green pellets to analyze the luminescent emission from the samples. The experiments were performed at 800 degrees C with an applied electric field of 100 V center dot cm-1 at 1 kHz, limiting the electric current to 1 A. Luminescence data were obtained in the 200-1200 nm (ultraviolet-visible-near-infrared) range. The deconvolution of the optical spectra allowed for the identification of emission bands in the visible range due exclusively to the samples. The wavelength maxima of the emission bands in 8YSZ were found to be different from those in 20SDC. It is suggested that these bands might originate from the interaction of the electric current, resulting from the application of the electric field, with the depleted species located at the space-charge region at the grain boundaries of these ceramics. The main results represent a contribution to help to clarify the mechanisms responsible for the fast densification with inhibition of grain growth in electroceramics.