Assessment of high conductivity ceramic fuel concept under normal and accident conditions

Carregando...
Imagem de Miniatura

Data

Data de publicação

2020

Orientador

Título da Revista

ISSN da Revista

Título do Volume

É parte de

É parte de

É parte de

É parte de

TECHNICAL MEETING ON MODELLING OF FUEL BEHAVIOUR IN DESIGN BASIS ACCIDENTS AND DESIGN EXTENSION CONDITIONS
Exportar
Mendeley

Projetos de Pesquisa

Unidades Organizacionais

Fascículo

Resumo
After the Fukushima Daiichi accident, the high conductivity ceramic concept fuel has been revisited. The thermal conductivity of uranium dioxide used as nuclear fuel is relatively low, as consequence fuel pellet centerline reaches high temperatures, high fission gas release rate, increase of fuel rod internal pressure reducing the safety thermal margin. Several investigations had been conducted in framework of ATF (Accident Tolerant Fuel) using different additives in ceramic fuel (UO2) in order to enhance thermal conductivity in uranium dioxide pellets. The increase of the thermal conductivity of fuel can reduce the pellet centerline temperature, consequently less fission gas releasing rate and the low risk of fuel melting, hence improving significantly fuel performance under accident conditions. The beryllium oxide (BeO) has high conductivity among other ceramics and is quite compatible with UO2up to 2200°C, at which temperature it forms a eutectic. Moreover, it is compatible with zircaloy cladding, does not react with water, has a good neutronic characteristics (low neutron absorption cross-section, neutron moderation). This work presents a preliminary assessment of high conductivity ceramic concept fuel considering UO2-BeO mixed oxide fuel containing 10 wt% of BeO. The FRAPCON and FRAPTRAN fuel performance codes were conveniently adapted to support the evaluation of UO2-BeO mixed oxide fuel. The thermal and mechanical properties were modified in the codes for a proper and representative simulation of the fuel performance. Theobtainedpreliminary results show lower fuel centerline temperatureswhen compared to standard UO2 fuel, consequently promoting enhancement of safety margins during the operational condition and under LOCA accident scenario.

Como referenciar
GOMES, D.S.; ABE, A.; SILVA, A.T.; MUNIZ, R.O.R.; GIOVEDI, C.; MARTINS, M.R. Assessment of high conductivity ceramic fuel concept under normal and accident conditions. In: TECHNICAL MEETING ON MODELLING OF FUEL BEHAVIOUR IN DESIGN BASIS ACCIDENTS AND DESIGN EXTENSION CONDITIONS, May 13-16, 2019, Shenzhen, China. Proceedings... Vienna, Austria: International Atomic Energy Agency, 2020. p. 95-101. (IAEA-TECDOC-1913). Disponível em: http://repositorio.ipen.br/handle/123456789/31064. Acesso em: 30 Dec 2025.
Esta referência é gerada automaticamente de acordo com as normas do estilo IPEN/SP (ABNT NBR 6023) e recomenda-se uma verificação final e ajustes caso necessário.

Agência de fomento

Coleções