Breast cancer subtype classification using a one-dimensional convolutional neural network in hyperspectral images

dc.contributor.authorDEL-VALLE, MATHEUSpt_BR
dc.contributor.authorSANTOS, MOISES O. dospt_BR
dc.contributor.authorBERNARDES, EMERSON S.pt_BR
dc.contributor.authorZEZELL, DENISE M.pt_BR
dc.coverageInternacionalpt_BR
dc.creator.eventoLATIN AMERICA OPTICS AND PHOTONICS CONFERENCEpt_BR
dc.date.accessioned2023-02-06T13:14:55Z
dc.date.available2023-02-06T13:14:55Z
dc.date.eventoAugust 7-11, 2022pt_BR
dc.description.abstractFTIR spectroscopy imaging in addition to deep learning is a potential tool for breast cancer subtype classification, where accuracies higher than 86% can be achieved to predict among all subtypes.pt_BR
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)pt_BR
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)pt_BR
dc.description.sponsorshipIDFAPESP: 21/00633-0; 17/50332-0pt_BR
dc.description.sponsorshipIDCNPq: INCT-465763/2014-6; PQ-31457/2021-9; PhD-grant- 142229/2019-9pt_BR
dc.description.sponsorshipIDCAPES: 001pt_BR
dc.event.siglaLAOPpt_BR
dc.identifier.citationDEL-VALLE, MATHEUS; SANTOS, MOISES O. dos; BERNARDES, EMERSON S.; ZEZELL, DENISE M. Breast cancer subtype classification using a one-dimensional convolutional neural network in hyperspectral images. In: LATIN AMERICA OPTICS AND PHOTONICS CONFERENCE, August 7-11, 2022, Recife, PE. <b>Proceedings...</b> Washington, DC, USA: Optica Publishing Group, 2022. DOI: <a href="https://dx.doi.org/10.1364/LAOP.2022.M4B.5">10.1364/LAOP.2022.M4B.5</a>. Disponível em: http://repositorio.ipen.br/handle/123456789/33712.
dc.identifier.doi10.1364/LAOP.2022.M4B.5pt_BR
dc.identifier.orcid0000-0001-7404-9606pt_BR
dc.identifier.orcid0000-0002-0029-7313pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-0029-7313
dc.identifier.orcidhttps://orcid.org/0000-0001-7404-9606
dc.identifier.urihttp://repositorio.ipen.br/handle/123456789/33712
dc.localWashington, DC, USApt_BR
dc.local.eventoRecife, PEpt_BR
dc.publisherOptica Publishing Grouppt_BR
dc.rightsopenAccesspt_BR
dc.subjectmammary glands
dc.subjectcarcinomas
dc.subjectneoplasms
dc.subjectfourier transformation
dc.subjectspectroscopy
dc.subjectclassification
dc.subjectneural networks
dc.titleBreast cancer subtype classification using a one-dimensional convolutional neural network in hyperspectral imagespt_BR
dc.typeTexto completo de eventopt_BR
dspace.entity.typePublication
ipen.autorEMERSON SOARES BERNARDES
ipen.autorDENISE MARIA ZEZELL
ipen.autorMOISES OLIVEIRA DOS SANTOS
ipen.autorMATHEUS DEL VALLE
ipen.codigoautor12099
ipen.codigoautor693
ipen.codigoautor8411
ipen.codigoautor15209
ipen.contributor.ipenauthorEMERSON SOARES BERNARDES
ipen.contributor.ipenauthorDENISE MARIA ZEZELL
ipen.contributor.ipenauthorMOISES OLIVEIRA DOS SANTOS
ipen.contributor.ipenauthorMATHEUS DEL VALLE
ipen.date.recebimento23-02
ipen.event.datapadronizada2022pt_BR
ipen.identifier.ipendoc29346pt_BR
ipen.identifier.ods3
ipen.notas.internasProceedingspt_BR
ipen.type.genreArtigo
relation.isAuthorOfPublication8115c8bd-822c-4f5a-9f49-3c12570ed40a
relation.isAuthorOfPublicationa565f8ad-3432-4891-98c0-a587f497db21
relation.isAuthorOfPublication1660cd3d-a7bb-40e2-9724-77f28d5c866a
relation.isAuthorOfPublicationfdd01116-8cc4-406a-aafb-606941dc28dc
relation.isAuthorOfPublication.latestForDiscoveryfdd01116-8cc4-406a-aafb-606941dc28dc
sigepi.autor.atividadeZEZELL, DENISE M.:693:920:Npt_BR
sigepi.autor.atividadeBERNARDES, EMERSON S.:12099:110:Npt_BR
sigepi.autor.atividadeSANTOS, MOISES O. dos:8411:920:Npt_BR
sigepi.autor.atividadeDEL-VALLE, MATHEUS:15209:920:Spt_BR

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
29346.pdf
Tamanho:
312.22 KB
Formato:
Adobe Portable Document Format
Descrição:

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:

Coleções