Machine Learning methods for micro-FTIR imaging classification of human skin tumors

dc.contributor.authorDEL VALLE, MATHEUSpt_BR
dc.contributor.authorSTANCARI, KLEBERpt_BR
dc.contributor.authorCASTRO, PEDRO A.A. dept_BR
dc.contributor.authorSANTOS, MOISES O. dospt_BR
dc.contributor.authorZEZELL, DENISE M.pt_BR
dc.coverageInternacionalpt_BR
dc.creator.eventoSBFOTON INTERNATIONAL OPTICS AND PHOTONICS CONFERENCEpt_BR
dc.date.accessioned2021-11-12T13:28:47Z
dc.date.available2021-11-12T13:28:47Z
dc.date.eventoMay 31 - June 2, 2021pt_BR
dc.description.abstractThis review presents some methods applied to micro-FTIR imaging for classification of human skin tumors. It is a collection of the pre-processing pipeline and machine learning classification models. The aim of this review is to update and summaiize the current methods which an applied in our skin tumor research.pt_BR
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)pt_BR
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)pt_BR
dc.description.sponsorshipIDFAPESP: 05/51689-2; 17/50332-0; 13/26113-6pt_BR
dc.description.sponsorshipIDCNPq: INCT 465763/2014-6; PQ 309902/2017-7pt_BR
dc.description.sponsorshipIDCAPES: PROCAD 88881.068505/2014-01pt_BR
dc.event.siglaSBFOTON IOPCpt_BR
dc.identifier.citationDEL VALLE, MATHEUS; STANCARI, KLEBER; CASTRO, PEDRO A.A. de; SANTOS, MOISES O. dos; ZEZELL, DENISE M. Machine Learning methods for micro-FTIR imaging classification of human skin tumors. In: SBFOTON INTERNATIONAL OPTICS AND PHOTONICS CONFERENCE, May 31 - June 2, 2021, Online. <b>Proceedings...</b> Piscataway, NJ, USA: IEEE, 2021. DOI: <a href="https://dx.doi.org/10.1109/SBFotonIOPC50774.2021.9461969">10.1109/SBFotonIOPC50774.2021.9461969</a>. Disponível em: http://repositorio.ipen.br/handle/123456789/32339.
dc.identifier.doi10.1109/SBFotonIOPC50774.2021.9461969pt_BR
dc.identifier.orcid0000-0001-7404-9606pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-7404-9606
dc.identifier.urihttp://repositorio.ipen.br/handle/123456789/32339
dc.localPiscataway, NJ, USApt_BR
dc.local.eventoOnlinept_BR
dc.publisherIEEEpt_BR
dc.rightsopenAccesspt_BR
dc.subjectskin diseases
dc.subjecttumor cells
dc.subjectinfrared radiation
dc.subjectfourier transformation
dc.subjectmachine learning
dc.subjectspectra
dc.titleMachine Learning methods for micro-FTIR imaging classification of human skin tumorspt_BR
dc.typeTexto completo de eventopt_BR
dspace.entity.typePublication
ipen.autorKLEBER ADRIANI STANCARI
ipen.autorDENISE MARIA ZEZELL
ipen.autorMOISES OLIVEIRA DOS SANTOS
ipen.autorPEDRO ARTHUR AUGUSTO DE CASTRO
ipen.autorMATHEUS DEL VALLE
ipen.codigoautor15402
ipen.codigoautor693
ipen.codigoautor8411
ipen.codigoautor12053
ipen.codigoautor15209
ipen.contributor.ipenauthorKLEBER ADRIANI STANCARI
ipen.contributor.ipenauthorDENISE MARIA ZEZELL
ipen.contributor.ipenauthorMOISES OLIVEIRA DOS SANTOS
ipen.contributor.ipenauthorPEDRO ARTHUR AUGUSTO DE CASTRO
ipen.contributor.ipenauthorMATHEUS DEL VALLE
ipen.date.recebimento21-11
ipen.event.datapadronizada2021pt_BR
ipen.identifier.ipendoc28107pt_BR
ipen.notas.internasProceedingspt_BR
ipen.type.genreArtigo
relation.isAuthorOfPublication98ed2954-eea9-494d-a2a1-92deb707a41c
relation.isAuthorOfPublicationa565f8ad-3432-4891-98c0-a587f497db21
relation.isAuthorOfPublication1660cd3d-a7bb-40e2-9724-77f28d5c866a
relation.isAuthorOfPublication4fc30bdc-40c6-4bd5-9431-96db978a0475
relation.isAuthorOfPublicationfdd01116-8cc4-406a-aafb-606941dc28dc
relation.isAuthorOfPublication.latestForDiscoveryfdd01116-8cc4-406a-aafb-606941dc28dc
sigepi.autor.atividadeZEZELL, DENISE M.:693:920:Npt_BR
sigepi.autor.atividadeSANTOS, MOISES O. dos:8411:920:Npt_BR
sigepi.autor.atividadeCASTRO, PEDRO A.A. de:12053:930:Npt_BR
sigepi.autor.atividadeSTANCARI, KLEBER:15402:920:Npt_BR
sigepi.autor.atividadeDEL VALLE, MATHEUS:15209:920:Spt_BR
Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
28107.pdf
Tamanho:
387.74 KB
Formato:
Adobe Portable Document Format
Descrição:
Licença do Pacote
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Coleções