Comparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterization

dc.contributor.authorOTERO, ANDRE G.L.pt_BR
dc.contributor.authorPOTIENS JUNIOR, ADEMAR J.pt_BR
dc.contributor.authorCALZETA, EDUARDO P.pt_BR
dc.contributor.authorMARUMO, JULIO T.pt_BR
dc.coverageInternacionalpt_BR
dc.creator.eventoINTERNATIONAL NUCLEAR ATLANTIC CONFERENCEpt_BR
dc.date.accessioned2020-01-06T11:57:35Z
dc.date.available2020-01-06T11:57:35Z
dc.date.eventoOctober 21-25, 2019pt_BR
dc.description.abstractNeural networks, particularly deep neural networks, are used nowadays with great success in several tasks, such as image classification, image segmentation, translation, text to speech, speech to text, achieving super-human performance. In this study, we explore the capabilities of deep learning on a new field: gamma-spectroscopy analysis, comparing the classification performance of different deep neural networks architectures. We choose VGG-16, VGG-19, Xception, ResNet, InceptionV3 and MobileNet architectures which are available through the Keras Deep Learning framework to identify several different radionuclides (Am-241, Ba- 133, Cd-109, Co-60, Cs-137, Eu-152, Mn-54, Na-24, and Pb-210). Using an HPGe detector to acquire several gamma spectra, from different sealed sources to created a dataset that was used for the training and validation of the neural networks comparison. This study demonstrates the strengths and weakness of applying deep learning on gamma-spectroscopy analysis for nuclear waste characterization.pt_BR
dc.event.siglaINACpt_BR
dc.format.extent1278-1283pt_BR
dc.identifier.citationOTERO, ANDRE G.L.; POTIENS JUNIOR, ADEMAR J.; CALZETA, EDUARDO P.; MARUMO, JULIO T. Comparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterization. In: INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE, October 21-25, 2019, Santos, SP. <b>Proceedings...</b> Rio de Janeiro: Associação Brasileira de Energia Nuclear, 2019. p. 1278-1283. Disponível em: http://repositorio.ipen.br/handle/123456789/30561.
dc.identifier.orcid0000-0003-3010-9691pt_BR
dc.identifier.orcid0000-0002-4098-0272pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-3010-9691
dc.identifier.urihttp://repositorio.ipen.br/handle/123456789/30561
dc.localRio de Janeiropt_BR
dc.local.eventoSantos, SPpt_BR
dc.publisherAssociação Brasileira de Energia Nuclear
dc.rightsopenAccesspt_BR
dc.subjectartificial intelligence
dc.subjectcomputer architecture
dc.subjectgamma spectroscopy
dc.subjecthigh-purity ge detectors
dc.subjectneural networks
dc.subjectradioactive waste management
dc.subjectradioactive wastes
dc.subjectradioisotopes
dc.subjectsealed sources
dc.titleComparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterizationpt_BR
dc.typeTexto completo de eventopt_BR
dspace.entity.typePublication
ipen.autorJULIO TAKEHIRO MARUMO
ipen.autorADEMAR JOSE POTIENS JUNIOR
ipen.autorANDRE GOMES LAMAS OTERO
ipen.codigoautor826
ipen.codigoautor734
ipen.codigoautor14881
ipen.contributor.ipenauthorJULIO TAKEHIRO MARUMO
ipen.contributor.ipenauthorADEMAR JOSE POTIENS JUNIOR
ipen.contributor.ipenauthorANDRE GOMES LAMAS OTERO
ipen.date.recebimento20-01
ipen.event.datapadronizada2019pt_BR
ipen.identifier.ipendoc26211pt_BR
ipen.notas.internasProceedingspt_BR
ipen.type.genreArtigo
relation.isAuthorOfPublication4555167f-0f50-4308-be74-c5a0f15d5dda
relation.isAuthorOfPublication9426362d-f495-4433-9b46-c4ecc014a459
relation.isAuthorOfPublicationdf15944c-4ab4-4b10-a2e9-ff5e965f5e20
relation.isAuthorOfPublication.latestForDiscoverydf15944c-4ab4-4b10-a2e9-ff5e965f5e20
sigepi.autor.atividadeMARUMO, JULIO T.:826:450:Npt_BR
sigepi.autor.atividadePOTIENS JUNIOR, ADEMAR J.:734:1120:Npt_BR
sigepi.autor.atividadeOTERO, ANDRE G.L.:14881:1120:Spt_BR

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
26211.pdf
Tamanho:
2.05 MB
Formato:
Adobe Portable Document Format
Descrição:

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:

Coleções