Comparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterization
| dc.contributor.author | OTERO, ANDRE G.L. | pt_BR |
| dc.contributor.author | POTIENS JUNIOR, ADEMAR J. | pt_BR |
| dc.contributor.author | CALZETA, EDUARDO P. | pt_BR |
| dc.contributor.author | MARUMO, JULIO T. | pt_BR |
| dc.coverage | Internacional | pt_BR |
| dc.creator.evento | INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE | pt_BR |
| dc.date.accessioned | 2020-01-06T11:57:35Z | |
| dc.date.available | 2020-01-06T11:57:35Z | |
| dc.date.evento | October 21-25, 2019 | pt_BR |
| dc.description.abstract | Neural networks, particularly deep neural networks, are used nowadays with great success in several tasks, such as image classification, image segmentation, translation, text to speech, speech to text, achieving super-human performance. In this study, we explore the capabilities of deep learning on a new field: gamma-spectroscopy analysis, comparing the classification performance of different deep neural networks architectures. We choose VGG-16, VGG-19, Xception, ResNet, InceptionV3 and MobileNet architectures which are available through the Keras Deep Learning framework to identify several different radionuclides (Am-241, Ba- 133, Cd-109, Co-60, Cs-137, Eu-152, Mn-54, Na-24, and Pb-210). Using an HPGe detector to acquire several gamma spectra, from different sealed sources to created a dataset that was used for the training and validation of the neural networks comparison. This study demonstrates the strengths and weakness of applying deep learning on gamma-spectroscopy analysis for nuclear waste characterization. | pt_BR |
| dc.event.sigla | INAC | pt_BR |
| dc.format.extent | 1278-1283 | pt_BR |
| dc.identifier.citation | OTERO, ANDRE G.L.; POTIENS JUNIOR, ADEMAR J.; CALZETA, EDUARDO P.; MARUMO, JULIO T. Comparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterization. In: INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE, October 21-25, 2019, Santos, SP. <b>Proceedings...</b> Rio de Janeiro: Associação Brasileira de Energia Nuclear, 2019. p. 1278-1283. Disponível em: http://repositorio.ipen.br/handle/123456789/30561. | |
| dc.identifier.orcid | 0000-0003-3010-9691 | pt_BR |
| dc.identifier.orcid | 0000-0002-4098-0272 | pt_BR |
| dc.identifier.orcid | https://orcid.org/0000-0003-3010-9691 | |
| dc.identifier.uri | http://repositorio.ipen.br/handle/123456789/30561 | |
| dc.local | Rio de Janeiro | pt_BR |
| dc.local.evento | Santos, SP | pt_BR |
| dc.publisher | Associação Brasileira de Energia Nuclear | |
| dc.rights | openAccess | pt_BR |
| dc.subject | artificial intelligence | |
| dc.subject | computer architecture | |
| dc.subject | gamma spectroscopy | |
| dc.subject | high-purity ge detectors | |
| dc.subject | neural networks | |
| dc.subject | radioactive waste management | |
| dc.subject | radioactive wastes | |
| dc.subject | radioisotopes | |
| dc.subject | sealed sources | |
| dc.title | Comparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterization | pt_BR |
| dc.type | Texto completo de evento | pt_BR |
| dspace.entity.type | Publication | |
| ipen.autor | JULIO TAKEHIRO MARUMO | |
| ipen.autor | ADEMAR JOSE POTIENS JUNIOR | |
| ipen.autor | ANDRE GOMES LAMAS OTERO | |
| ipen.codigoautor | 826 | |
| ipen.codigoautor | 734 | |
| ipen.codigoautor | 14881 | |
| ipen.contributor.ipenauthor | JULIO TAKEHIRO MARUMO | |
| ipen.contributor.ipenauthor | ADEMAR JOSE POTIENS JUNIOR | |
| ipen.contributor.ipenauthor | ANDRE GOMES LAMAS OTERO | |
| ipen.date.recebimento | 20-01 | |
| ipen.event.datapadronizada | 2019 | pt_BR |
| ipen.identifier.ipendoc | 26211 | pt_BR |
| ipen.notas.internas | Proceedings | pt_BR |
| ipen.type.genre | Artigo | |
| relation.isAuthorOfPublication | 4555167f-0f50-4308-be74-c5a0f15d5dda | |
| relation.isAuthorOfPublication | 9426362d-f495-4433-9b46-c4ecc014a459 | |
| relation.isAuthorOfPublication | df15944c-4ab4-4b10-a2e9-ff5e965f5e20 | |
| relation.isAuthorOfPublication.latestForDiscovery | df15944c-4ab4-4b10-a2e9-ff5e965f5e20 | |
| sigepi.autor.atividade | MARUMO, JULIO T.:826:450:N | pt_BR |
| sigepi.autor.atividade | POTIENS JUNIOR, ADEMAR J.:734:1120:N | pt_BR |
| sigepi.autor.atividade | OTERO, ANDRE G.L.:14881:1120:S | pt_BR |