FABIO RODRIGUES DE MATTOS

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 10 de 12
  • Resumo IPEN-doc 26660
    Production of iodine-125 in nuclear reactors
    2011 - ZEITUNI, CARLOS A.; ROSTELATO, MARIA E.C.M.; JAE-SON, KWANG; LEE, JUN S.; COSTA, OSVALDO L.; MOURA, JOÃO A.; FEHER, ANSELMO; MOURA, EDUARDO S.; SOUZA, CARLA D.; MATTOS, FABIO R.; PELEIAS JUNIOR, FERNANDO S.; KARAM JUNIOR, DIB
    Cancer is one of the worst illnesses in the world and one of the major causes of death in Brazil [1,2]. For this reason, the Nuclear Energy National Commission (CNEN) started a project to produce some medical radioisotopes to treat cancer. One of the main products is the iodine-125 seeds [3]. This iodine seed can be used to treat several kinds of cancer: prostate, lung, eye, brain. As Brazil will construct a new reactor to produce radioisotopes, it is necessary define how the iodine-125 production will carry out [4,5]. The main reaction of this production is the irradiation of the enriched xenon-124 in gaseous form. Xe-124 changed to Iodine-125 by neutron capture following in two decays: Xe-124 (n, y) —• Xe-125m (57s) —• I- 125 or Xe-124 (n, y) —• Xe-125 (19.9 h) —• 1-125. However the production in reactors is the most common technique used, there is one disadvantage to use it: the production of iodine- 126 after several hours of irradiation. Iodine-126 has a half life of 13.1 days and it has some usefulness emitters for medical uses. Iodine-126 is considered a contamination [6]. For all these reasons, the IPEN/CNEN-SP research group decided for two techniques of production: in batch or continuous system. The production in batch consists in a sealed capsule that is placed in the reactor core for around 64 hours. In this type of production, some iodine-126 is produced and a certain quantity of Xe-124 is not activated. Normally, it needs to wait around 5 to 7 iodine-126 half-lives to guarantee the decrease of the activity of the contamination. This time will make Iodine-125 with only 50% till 34% of the initial production. The second technique is the continuous production using a cryogenic system. This technique consists in two capsules: one inside the reactor core and the second one out of the neutron flux. These two capsules will be linked with two cryogenic pumps to guarantee that all iodine-125 produced in the core will be take off the reactor core. The great disadvantage of this technique is the using of two positions in the core of the reactor. Brazil will have only one radioisotope reactor producing. And like there is a huge quantity of materials to be produced, it is not a guarantee the position in the reactor for this production. Besides of that the seeds production in Brazil is only 3000 per month, which demands around 3.5 Ci per month. The batch production produces a low quantity per reactor cycle of iodine-125, but this low quantity can be more than that [2,3].
  • Resumo IPEN-doc 26564
    Preliminary proposal for radioactive liquid waste management in a brachytherapy sources production laboratory
    2011 - SOUZA, CARLA D.; VICENTE, ROBERTO; ROSTELATO, MARIA E.C.M.; ZEITUNI, CARLOS A.; MOURA, JOÃO A.; MOURA, EDUARDO S.; MATTOS, FABIO R.; FEHER, ANSELMO; COSTA, OSVALDO L. da; VIANNA, ESTANISLAU B.; CARVALHO, LAERCIO de; KARAN JUNIOR, DIB
    Malignant tumors are responsible for a high death rate in the entire world population (1). Prostate cancer is the third most common among men, after skin and lung. The treatment using permanent Iodine-125 seed are too costly, preventing the use in large scale (1) (2). A multidisciplinary team was formed to develop a source of Iodine-125 and assemble a national facility for local production. For the production correct implementation, a plan for radiological protection that has the management of radioactive waste fully specified are necessary. This work has developed an initial liquid waste management proposal. The most important Iodine-125 liquid waste is generated in the first phase of the process, radioactive material fixation. The initial proposal is that the waste is deposited in a 20 L container (2 years to fill). The final activity of this container is 4.93 x 1011 Bq. According to the discharge limits presented in the brazilian's regulation CNEN - NE - 605 - Management of radioactive wastes in radioactive facilities (3) this waste could safely be release to the environment in 3.97 years. In the other hand,if a minimization waste policy will be implemented, the production could becomes more efficient and cheaper. Waste storage at 25 L containers and changing some production parameters results in 3 years waste to be eliminated in 3.94 years. This new plan will optimize the materials used and diminished the waste generation facilitating the management, contributing to a cheaper product.
  • Resumo IPEN-doc 26562
    Iridium-192 seed development for ophthalmic cancer treatment
    2011 - ROSTELATO, M.E.C.M.; MATTOS, F.R.; ZEITUNI, C.A.; SOUZA, C.D.; MOURA, J.A.; MOURA, E.S.; FEHER, A.; COSTA, O.L.; PELEIAS JUNIOR, F.S.; MARQUES, J.R.O.; BELFORT NETO, R.
    Considered a public health problem in Brazil, cancer is the second leading cause of mortality by disease, representing 13.2% of all deaths in the country [1]. Ophthalmic brachytherapy involves inserting an acrylic plate with radioactive material in the eyes of a patient for treatment of ocular tumors. This work is a partnership between Escola Paulista de Medicina - UNIFESP and the Instituto de Pesquisas Energéticas e Nucleares - IPEN for development and implementation of a cheaper therapeutic treatment for ophthalmic cancer with a iridium-192 source, to attend a greater number of patients. Iridium-192 is produced in nuclear reactor. It has a half-life of 74.2 days and decays by beta emission with average energy of 370 keV.[2,3]. The seed will be a platinum-iridium alloy core (80/20), encapsulated in a titanium tube [4]. This project will be divided into the following steps: characterization of materials by FRX (X-ray fluorescence) e EDS (Energy Dispersive Spectroscopy); iridium irradiation in the nuclear reactor IEA-R1; sealing of iridium-192 seed; leakage tests of iridium-192 source in accordance with standard ISO-9978 (radiation protection- Sealed radioactive sources- Leakage test methods) [5]; metallographic tests and measure the activity of the source. The evaluation for use in the ophthalmic treatment of cancer will be made later.
  • Artigo IPEN-doc 22887
    Surface coating and study of metallic cores for radioactive sources production used in cancer treatment
    2016 - ROSTELATO, M.E.C.M.; SOUZA, C.D.; ZEITUNI, C.A.; MATTOS, F.R.; MARQUES, J.R.O.; MOURA, J.A.; FEHER, A.; COSTA, O.L.; SOUZA, D.C.B.; TIEZZI, R.; RODRIGUES, B.T.; KARAM JUNIOR, D.
    Developing new and innovative treatments for cancer is an urgent matter. The National Institute of Cancer estimates that Brazil will have 576,000 new cases of the disease in 2015. Our research group is developing new radioactive seeds to be use in radiotherapy procedures since the early 2000’s. We present the surface study and research for two of our major projects: iodine-125 seeds for prostate, brain and eye cancer treatment and iridium-192 for eyecancer treatment.
  • Artigo IPEN-doc 21233
    Desenvolvimento da metodologia para sintese do poli-)acido latico-co-acido glicolico) para utilização na produção de fontes radioativas
    2015 - PELEIAS JUNIOR, FERNANDO dos S.; ZEITUNI, CARLOS A.; ROSTELATO, MARIA E.C.M.; FECHINE, GUILHERMINO J.M.; SOUZA, CARLA D. de; MATTOS, FABIO R. de; MOURA, EDUARDO S. de; MOURA, JOAO A.; BENEGA, MARCOS A.G.; FEHER, ANSELMO; COSTA, OSVALDO L. da; RODRIGUES, BRUNA T.
  • Resumo IPEN-doc 18788
    Fixação de iodo radioativo para semente de iodo-125
    2012 - SOUZA, C.D.; ROSTELATO, M.E.C.M.; MANSINI, R.; ARAQUI, K.; MATTOS, FABIO R.; BENEGA, M.; PELEIAS, F.
  • Artigo IPEN-doc 19382
    Development of irradiation support devices for production of brachytherapy seeds
    2013 - MATTOS, FABIO R.; ROSTELATO, MARIA E.C.M.; ZEITUNI, CARLOS A.; SOUZA, CARLA D.; MOURA, JOAO A.; PELEIAS JUNIOR, FERNANDO S.; KARAN JUNIOR, DIB; FEHER, ANSELMO; OLIVEIRA, TIAGO B.; BENEGA, MARCOS A.G.
  • Artigo IPEN-doc 19425
    Influence of the profile of iridium-192 wire in measurements of quality control for use in brachytherapy
    2013 - COSTA, OSVALDO L.; ZEITUNI, CARLOS A.; ROSTELATO, MARIA E.C.M.; MOURA, JOAO A.; FEHER, ANSELMO; MOURA, EDUARDO S.; SOUZA, CARLA D.; SOMESSARI, SAMIR L.; PELEIAS JUNIOR, FERNANDO S.; MATTOS, FABIO R.
  • Artigo IPEN-doc 19396
    Comparison between methods for fixing radioactive iodine in silver substrate for manufacturing brachytherapy sources
    2013 - PELEIAS JUNIOR, FERNANDO S.; ZEITUNI, CARLOS A.; ROSTELATO, MARIA E.C.M.; SOUZA, CARLA D.; MATTOS, FABIO R.; BENEGA, MARCOS A.G.; MOURA, JOAO A.; MOURA, EDUARDO S.; FEHER, ANSELMO; COSTA, OSVALDO L.; OLIVEIRA, TIAGO B.; KARAN JUNIOR, DIB
  • Artigo IPEN-doc 17184
    Development of an iridium-192 seed for use in ophthalmic brachytherapy
    2011 - MATTOS, FABIO R.; ROSTELATO, MARIA E.C.M.; ZEITUNI, CARLOS; MOURA, JOAO A.; COSTA, OSVALDO L.; FEHER, ANSELMO; MOURA, EDUARDO S.; SOUZA, CARLA D.; PELEIAS JUNIOR, FERNANDO S.