OSVALDO LUIZ DA COSTA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 10 de 48
  • Artigo IPEN-doc 29832
    A new 124Xe irradiation system for 123I production
    2023 - COSTA, OSVALDO L. da; BARCELLOS, HENRIQUE; MATSUDA, HYLTON; SUMIYA, LUIZ C. do A.; JUNQUEIRA, FERNANDO de C.; MATSUDA, MARGARETH M.N.; LAPOLLI, ANDRE L.
    Since 2001, Nuclear and Energy Research Institute IPEN-CNEN has produced weekly ultrapure iodine-123, using a manual irradiation system, fully developed in IPEN. Iodine-123 radiopharmaceuticals have been produced and distributed to hospitals and clinics of nuclear medicine, where several diagnostic imaging procedures for thyroid, brain and cardiovascular functions are performed. Due to the short half-life and emission of low-energy photons, this radioisotope becomes suitable for diagnosis in children. In the present work, the technical and constructive aspects of a new fully automated irradiation system, dedicated to 123I routine production, employing enriched xenon-124 gas as the target material is presented. This new system consists of a target, a water and helium cooling system, a cryogenic system, an electric power system, and a control and process monitoring unit, composed of supervisory software, connected to a programmable logic controller via personal computer. In this new concept, there is no need for human intervention during radioisotope production, reducing the possibility of eventual failures or incidents involving radioactive material. By using this new system, a specific yield of 2.70 mCi/μAh per irradiation was achieved in validation runs, and after three years of routine production of iodine- 123, the system showed reliability and resilience.
  • Artigo IPEN-doc 29113
    Design and assembly of an XY-type beam current monitor for cyclotron accelerators
    2023 - BARCELLOS, HENRIQUE; MATSUDA, HYLTON; LAPOLLI, ANDRE L.; SUMIYA, LUIZ C. do A.; JUNQUEIRA, FERNANDO de C.; COSTA, OSVALDO L. da
    A water-cooled XY-type beam current monitor was designed, manufactured and assembled in a cyclotron accelerator beam transport line. Tests were performed, demonstrating that apparatus is an instrument of great assistance in proton beam position. The XY-type beam current monitor has been widely used in liquid target irradiations, employing irradiation system which were originally designed for irradiations on 18 MeV cyclotron accelerator (Cyclone 18, IBA) only, however, with this apparatus, the target may be exchanged between the 30 MeV (Cyclone 30, IBA) and 18 MeV cyclotrons.
  • Resumo IPEN-doc 26660
    Production of iodine-125 in nuclear reactors
    2011 - ZEITUNI, CARLOS A.; ROSTELATO, MARIA E.C.M.; JAE-SON, KWANG; LEE, JUN S.; COSTA, OSVALDO L.; MOURA, JOÃO A.; FEHER, ANSELMO; MOURA, EDUARDO S.; SOUZA, CARLA D.; MATTOS, FABIO R.; PELEIAS JUNIOR, FERNANDO S.; KARAM JUNIOR, DIB
    Cancer is one of the worst illnesses in the world and one of the major causes of death in Brazil [1,2]. For this reason, the Nuclear Energy National Commission (CNEN) started a project to produce some medical radioisotopes to treat cancer. One of the main products is the iodine-125 seeds [3]. This iodine seed can be used to treat several kinds of cancer: prostate, lung, eye, brain. As Brazil will construct a new reactor to produce radioisotopes, it is necessary define how the iodine-125 production will carry out [4,5]. The main reaction of this production is the irradiation of the enriched xenon-124 in gaseous form. Xe-124 changed to Iodine-125 by neutron capture following in two decays: Xe-124 (n, y) —• Xe-125m (57s) —• I- 125 or Xe-124 (n, y) —• Xe-125 (19.9 h) —• 1-125. However the production in reactors is the most common technique used, there is one disadvantage to use it: the production of iodine- 126 after several hours of irradiation. Iodine-126 has a half life of 13.1 days and it has some usefulness emitters for medical uses. Iodine-126 is considered a contamination [6]. For all these reasons, the IPEN/CNEN-SP research group decided for two techniques of production: in batch or continuous system. The production in batch consists in a sealed capsule that is placed in the reactor core for around 64 hours. In this type of production, some iodine-126 is produced and a certain quantity of Xe-124 is not activated. Normally, it needs to wait around 5 to 7 iodine-126 half-lives to guarantee the decrease of the activity of the contamination. This time will make Iodine-125 with only 50% till 34% of the initial production. The second technique is the continuous production using a cryogenic system. This technique consists in two capsules: one inside the reactor core and the second one out of the neutron flux. These two capsules will be linked with two cryogenic pumps to guarantee that all iodine-125 produced in the core will be take off the reactor core. The great disadvantage of this technique is the using of two positions in the core of the reactor. Brazil will have only one radioisotope reactor producing. And like there is a huge quantity of materials to be produced, it is not a guarantee the position in the reactor for this production. Besides of that the seeds production in Brazil is only 3000 per month, which demands around 3.5 Ci per month. The batch production produces a low quantity per reactor cycle of iodine-125, but this low quantity can be more than that [2,3].
  • Resumo IPEN-doc 26564
    Preliminary proposal for radioactive liquid waste management in a brachytherapy sources production laboratory
    2011 - SOUZA, CARLA D.; VICENTE, ROBERTO; ROSTELATO, MARIA E.C.M.; ZEITUNI, CARLOS A.; MOURA, JOÃO A.; MOURA, EDUARDO S.; MATTOS, FABIO R.; FEHER, ANSELMO; COSTA, OSVALDO L. da; VIANNA, ESTANISLAU B.; CARVALHO, LAERCIO de; KARAN JUNIOR, DIB
    Malignant tumors are responsible for a high death rate in the entire world population (1). Prostate cancer is the third most common among men, after skin and lung. The treatment using permanent Iodine-125 seed are too costly, preventing the use in large scale (1) (2). A multidisciplinary team was formed to develop a source of Iodine-125 and assemble a national facility for local production. For the production correct implementation, a plan for radiological protection that has the management of radioactive waste fully specified are necessary. This work has developed an initial liquid waste management proposal. The most important Iodine-125 liquid waste is generated in the first phase of the process, radioactive material fixation. The initial proposal is that the waste is deposited in a 20 L container (2 years to fill). The final activity of this container is 4.93 x 1011 Bq. According to the discharge limits presented in the brazilian's regulation CNEN - NE - 605 - Management of radioactive wastes in radioactive facilities (3) this waste could safely be release to the environment in 3.97 years. In the other hand,if a minimization waste policy will be implemented, the production could becomes more efficient and cheaper. Waste storage at 25 L containers and changing some production parameters results in 3 years waste to be eliminated in 3.94 years. This new plan will optimize the materials used and diminished the waste generation facilitating the management, contributing to a cheaper product.
  • Resumo IPEN-doc 26562
    Iridium-192 seed development for ophthalmic cancer treatment
    2011 - ROSTELATO, M.E.C.M.; MATTOS, F.R.; ZEITUNI, C.A.; SOUZA, C.D.; MOURA, J.A.; MOURA, E.S.; FEHER, A.; COSTA, O.L.; PELEIAS JUNIOR, F.S.; MARQUES, J.R.O.; BELFORT NETO, R.
    Considered a public health problem in Brazil, cancer is the second leading cause of mortality by disease, representing 13.2% of all deaths in the country [1]. Ophthalmic brachytherapy involves inserting an acrylic plate with radioactive material in the eyes of a patient for treatment of ocular tumors. This work is a partnership between Escola Paulista de Medicina - UNIFESP and the Instituto de Pesquisas Energéticas e Nucleares - IPEN for development and implementation of a cheaper therapeutic treatment for ophthalmic cancer with a iridium-192 source, to attend a greater number of patients. Iridium-192 is produced in nuclear reactor. It has a half-life of 74.2 days and decays by beta emission with average energy of 370 keV.[2,3]. The seed will be a platinum-iridium alloy core (80/20), encapsulated in a titanium tube [4]. This project will be divided into the following steps: characterization of materials by FRX (X-ray fluorescence) e EDS (Energy Dispersive Spectroscopy); iridium irradiation in the nuclear reactor IEA-R1; sealing of iridium-192 seed; leakage tests of iridium-192 source in accordance with standard ISO-9978 (radiation protection- Sealed radioactive sources- Leakage test methods) [5]; metallographic tests and measure the activity of the source. The evaluation for use in the ophthalmic treatment of cancer will be made later.
  • Resumo IPEN-doc 26556
    Improvements in the quality control of iridium-192 wire used in brachytherapy
    2011 - COSTA, OSVALDO L.; ZEITUNI, CARLOS A.; ROSTELATO, MARIA E.C.M.; MOURA, JOÃO A.; FEHER, ANSELMO; MOURA, EDUARDO S.; SOUZA, CARLA D.; SOMESSARI, SAMIR L.
    Brachytherapy is a method used in the treatment of cancerous tumors by ionizing radiation produced by sources introduced into the tumor area, this method seeks a more direct attack to the tumor, thereby maximizing the radiation dose to diseased tissue while minimizing the dose to healthy tissues (1). One of the radionuclides used in brachytherapy is iridium-192. The Radiation Technology Center (CTR) of the Nuclear and Energy Research Institute (IPEN) has produced commercially, since 1998, iridium-192 wires used in low dose rate (LDR) brachytherapy (2). To produce this radionuclide, firstly a iridium-platinum wire is irradiated in the nuclear reactor IEA-R1 for 30 hours with a neutron flux of 5 x 1013 ncm-2s-1, the wire is left to decay by 30 days to remove the main contaminants and then goes through a quality control before being sent to the hospital. In this quality control is checked the radiation homogeneity along each centimeter of the wire (3). To implement this procedure is used a device consisting of an ionization chamber surrounded by a lead shield with a small 1 cm wide slit, linked to the ionization chamber is a voltage source and a Keithley 617 electrometer, 2 minutes is the range used to measure the charge by the electrometer. The iridium wire is considered in accordance when there is no variation greater than 5% between the average measures and the maximum and minimum values. However, due to design features of the measurement system, the wire may appear to the detector through the slit in larger sizes than the ideal, improperly influencing the final quality control. This paper calculates the difference in size of these variations in profile and their influence on the final count, it compares the actual values obtained and describes the improvements made in quality control procedures that provided more accurate measurement data, analyzes the results and suggests changes in devices aimed at further improving the quality control of iridium-192 wires produced at IPEN and used in hospitals in Brazil.
  • Resumo IPEN-doc 15342
    Automation system for quality control in manufacture of iodine-125 sealed sources used in brachytherapy
    2011 - SOMESSARI, SAMIR L.; FEHER, ANSELMO; SPRENGER, FRANCISCO E; ROSTELATO, MARIA E.C.M.; MOURA, JOAO A.; COSTA, OSVALDO L.; CALVO, WILSON A.P.
    The aim of this work is to develop an automation system for Quality Control (QC) in the production of iodine-125 sealed sources, after undergoing the process of Laser Beam Welding (LBW). These sources, also known as iodine-125 seeds are used, successfully, in the treatment of cancer by brachytherapy, with low-dose rates. Each small seed is composed of a welded titanium capsule with 0.8 mm diameter and 4.5 mm in length, containing iodine-125 adsorbed on an internal silver wire. The seeds are implanted in the human prostate to irradiate the tumor and treat the cancerous cells. The technology to automate the quality control system in the manufacturing of iodine-125 seeds consists in developing and associate mechanical parts, electronic components and pneumatic circuits to control machines and processes. The automation technology for iodine-125 seed production developed in this work employs Programmable Logic Controller (PLC), step motors, drivers of control, electrical-electronic interfaces, photoelectric sensors, interfaces of communication and software development. Industrial automation plays an important role in the production of Iodine-125 seeds, with higher productivity and high standard of quality, facilitating the implementation and operation of processes with Good Manufacturing Practices (GMP). Nowadays, the Radiation Technology Center at IPEN-CNEN/SP imports 36,000 iodine-125 seeds per year and distributes them for clinics and hospitals in the country. However, the Brazilian potential market is of 8,000 iodine-125 seeds per month. Therefore, the local production of these radioactive seeds has become a priority for the Institute, aiming to reduce the price and increase the supply to the population in Brazil.
  • Artigo IPEN-doc 27743
    Gamma spectrometry of iodine-125 produced in IEA-R1 nuclear reactor, using HPGe detector and fixation into epoxy matrix disc
    2021 - COSTA, OSVALDO L. da; SOUZA, DAIANE C.B. de; CASTANHO, FABIO G.; FEHER, ANSELMO; MOURA, JOÃO A.; SOUZA, CARLA D.; OLIVEIRA, HENRIQUE B.; MADUAR, MARCELO F.; ZEITUNI, CARLOS A.; ROSTELATO, MARIA E.C.M.
    Few places in the world produce iodine-125. In Brazil, the first production was achieved by using the IEA-R1 nuclear reactor located at Nuclear and Energy Research Institute – IPEN. To verify the quality of iodine-125 produced, and the amount of contaminants such as iodine-126, cesium-134 and caesium-137 among others, iodine-125 samples were immobilized into epoxy matrix disc, with the same geometry of a barium-133 reference radioactive source, used to calibrate an HPGe detector. The HPGe detector has a thin carbon composite window, which allows measure the iodine-125 photopeaks, between 27.1 and 35.4 keV. The method employed here was successful in producing and measurement of iodine-125.
  • Artigo IPEN-doc 27362
    New core configuration for the fabrication of 125I radioactive sources for cancer treatment
    2020 - SOUZA, CARLA D. de; ZEITUNI, CARLOS A.; FEHER, ANSELMO; MOURA, JOÃO A.; COSTA, OSVALDO L. da; ANGELOCCI, LUCAS V.; ROSTELATO, MARIA E.C.M.
    In order to provide prostate brachytherapy treatment for more Brazilian men, IPEN is building a laboratory for the manufacture of radioactive sources. The new methodology for the production of iodine-125 seeds with yield 71.7% ± 5.3%. Points of importance were evaluated/discussed: photo-sensibility, reaction vial type, the substitution for iodine-131, pH, and solution volume. The surface was analyzed by FTIR and EDS. At the end, a Monte Carlo-MCNP6 simulation was performed to evaluate the TG-43 parameters.
  • Resumo IPEN-doc 27037
    Waste management protocols for Iridium-192 sources production laboratory used in cancer treatment
    2016 - ROSTELATO, MARIA E.C.M.; SOUZA, CARLA D. de; SOUZA, DAIANE C.B. de; ZEITUNI, CARLOS A.; TIEZZI, RODRIGO; COSTA, OSVALDO L. da; RODRIGUES, BRUNA T.; MOURA, JOÃO A.; FEHER, ANSELMO; SORGATTI, ANDERSON; MOURA, EDUARDO S. de; MARQUES, JOSE R. de O.; SANTOS, RAFAEL M. dos; KARAM JUNIOR, DIB
    Introduction: Brachytherapy is a form of treatment that uses radioactive seeds placed in contact or inside the region to be treated, maximizing the radiation dose inside the targeted areas. Iridium-192 is being used in brachytherapy since 1955. It presents emission energy in the “therapy region” (370keV) and is easily produced in a nuclear reactor (191Ir (n, γ) → 192Ir). Wires are an iridium-platinum alloy with 0.36 mm diameter and they can be cut in any needed length. They can be used in several types of cancer. The linear activity is between 1 mCi/cm (37 MBq/cm) and 4 mCi/cm (148 MBq/cm) with variations of 10% in 50 cm maximum. This activity values classified the treatment and low dose rate (0,4 à 2 Gy/h). The propose of this work is to present a waste management system in a cancer treatment radioactive sources production laboratory. Methodology and Results: The solid waste is previously characterized in the analysis phase. The contaminants are already known and they are insignificant due to their fast half- life. The iridium-192 half-life is 74.2 days, classified as very short half-life waste. The waste activity is adds to 8mCi (2.96x108 Bq) per wire. According to the CNEN-NN 6.08 standard, that presents the discharge levels, the limit is 1 kBq.kg-1 (2.7x10-5 mCi.kg-1). The radioactive waste generated during the I192 wires production has a weakly activity of 9.7 GBq.g-1. According to the standards, this activity is too high to be discarded into the environment. The waste must be managed following the ALARA principal using the R&R (retain e retard) system, that means, temporary storage and posterior discharge. Since every 4 months, maintenance is performed inside the hot cell used for production, the waste must be removed. Using the equation: 𝐴 = 𝐿 λ (1 − 𝑒−λt), the total calculated activity is 1.68 x 1016 Bq and 4.8 g mass at the end of each 4 months period. This amount is stored inside a shielding device that has 212.37 cm3 volume. The waste will take 9.8 years (calculated by 𝐴 = 𝐴0(𝑒−λt)) to decay to the discharge levels. To store 30 devices during 10 years, a space with 6,370 cm3 is necessary. The laboratory has enough space for this storage. Thus, the radioactive waste management can be performed through the R&R (retain and retard) system safely.