CARLA DARUICH DE SOUZA

Resumo

Bsc in Medical Physics from UNESP in Botucatu Compleated at IPEN, University of São Paulo: 1) Master's Degree: Comparison between methods for fixing iodine-125 on silver substrate for fabricating sources used in Brachytherapy / 2) PhD: Parameters for production of iodine-125 sources used in brachytherapy and "sandwich" doctorate: Washington State University - training in radiochemistry and organic chemistry / 3) Post doctorate: Production of nanosources for the treatment of cancer / 4) Project: Analysis of methods to obtain / produce nuclear material for use in a radioisotope thermoelectric generator (RTG)/ Advisor of the Professional Master's Degree in Radiation Technology in Health / Professor of the Professional Master Program in the disciplines Dosimetry for Radiotherapy and Radiotherapy Fundamentals / Professor of the Academic Master Program in the discipline TNA5805 - Brachytherapy: Fundamentals, Production, Application, Dosimetry and Quality Research Associate of KAERI - Korean Atomic Energy and Research Institute (Text obtained from the Currículo Lattes on October 6th 2021)


Formada em Física Médica pela UNESP em Botucatu Realizado no IPEN-USP/ SP: 1) Mestrado: Comparação entre métodos de fixação do iodo-125 em substrato de prata para confecção de fontes utilizadas em Braquiterapia / 2) Doutorado: Parâmetros para produção de confecção de fontes de iodo-125 utilizadas em Braquiterapia e Doutorado sanduíche: Washington State University - treinamento em radioquímica / 3) Pós doutorado: Produção de nanofontes para tratamento de câncer / 4) Projeto: Análise de formas de obtenção/produção do material nuclear para utilização em um gerador termoelétrico radioisotópico (RTG)/ Orientadora do Mestrado Profissional de Tecnologia das Radiações na Saúde/ Professora do Mestrado Profissional nas disciplinas Dosimetria para Radioterapia e Fundamentos de Radioterapia/ Professora do Mestrado Acadêmico na disciplina TNA5805 - Braquiterapia: Fundamentos, Produção, Aplicação, Dosimetria e Qualidade Research Associate do KAERI - Korean Atomic Energy and Research Institute (Texto extraído do Currículo Lattes em 06 out. 2021)

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 10 de 32
  • Resumo IPEN-doc 26562
    Iridium-192 seed development for ophthalmic cancer treatment
    2011 - ROSTELATO, M.E.C.M.; MATTOS, F.R.; ZEITUNI, C.A.; SOUZA, C.D.; MOURA, J.A.; MOURA, E.S.; FEHER, A.; COSTA, O.L.; PELEIAS JUNIOR, F.S.; MARQUES, J.R.O.; BELFORT NETO, R.
    Considered a public health problem in Brazil, cancer is the second leading cause of mortality by disease, representing 13.2% of all deaths in the country [1]. Ophthalmic brachytherapy involves inserting an acrylic plate with radioactive material in the eyes of a patient for treatment of ocular tumors. This work is a partnership between Escola Paulista de Medicina - UNIFESP and the Instituto de Pesquisas Energéticas e Nucleares - IPEN for development and implementation of a cheaper therapeutic treatment for ophthalmic cancer with a iridium-192 source, to attend a greater number of patients. Iridium-192 is produced in nuclear reactor. It has a half-life of 74.2 days and decays by beta emission with average energy of 370 keV.[2,3]. The seed will be a platinum-iridium alloy core (80/20), encapsulated in a titanium tube [4]. This project will be divided into the following steps: characterization of materials by FRX (X-ray fluorescence) e EDS (Energy Dispersive Spectroscopy); iridium irradiation in the nuclear reactor IEA-R1; sealing of iridium-192 seed; leakage tests of iridium-192 source in accordance with standard ISO-9978 (radiation protection- Sealed radioactive sources- Leakage test methods) [5]; metallographic tests and measure the activity of the source. The evaluation for use in the ophthalmic treatment of cancer will be made later.
  • Resumo IPEN-doc 27037
    Waste management protocols for Iridium-192 sources production laboratory used in cancer treatment
    2016 - ROSTELATO, MARIA E.C.M.; SOUZA, CARLA D. de; SOUZA, DAIANE C.B. de; ZEITUNI, CARLOS A.; TIEZZI, RODRIGO; COSTA, OSVALDO L. da; RODRIGUES, BRUNA T.; MOURA, JOÃO A.; FEHER, ANSELMO; SORGATTI, ANDERSON; MOURA, EDUARDO S. de; MARQUES, JOSE R. de O.; SANTOS, RAFAEL M. dos; KARAM JUNIOR, DIB
    Introduction: Brachytherapy is a form of treatment that uses radioactive seeds placed in contact or inside the region to be treated, maximizing the radiation dose inside the targeted areas. Iridium-192 is being used in brachytherapy since 1955. It presents emission energy in the “therapy region” (370keV) and is easily produced in a nuclear reactor (191Ir (n, γ) → 192Ir). Wires are an iridium-platinum alloy with 0.36 mm diameter and they can be cut in any needed length. They can be used in several types of cancer. The linear activity is between 1 mCi/cm (37 MBq/cm) and 4 mCi/cm (148 MBq/cm) with variations of 10% in 50 cm maximum. This activity values classified the treatment and low dose rate (0,4 à 2 Gy/h). The propose of this work is to present a waste management system in a cancer treatment radioactive sources production laboratory. Methodology and Results: The solid waste is previously characterized in the analysis phase. The contaminants are already known and they are insignificant due to their fast half- life. The iridium-192 half-life is 74.2 days, classified as very short half-life waste. The waste activity is adds to 8mCi (2.96x108 Bq) per wire. According to the CNEN-NN 6.08 standard, that presents the discharge levels, the limit is 1 kBq.kg-1 (2.7x10-5 mCi.kg-1). The radioactive waste generated during the I192 wires production has a weakly activity of 9.7 GBq.g-1. According to the standards, this activity is too high to be discarded into the environment. The waste must be managed following the ALARA principal using the R&R (retain e retard) system, that means, temporary storage and posterior discharge. Since every 4 months, maintenance is performed inside the hot cell used for production, the waste must be removed. Using the equation: 𝐴 = 𝐿 λ (1 − 𝑒−λt), the total calculated activity is 1.68 x 1016 Bq and 4.8 g mass at the end of each 4 months period. This amount is stored inside a shielding device that has 212.37 cm3 volume. The waste will take 9.8 years (calculated by 𝐴 = 𝐴0(𝑒−λt)) to decay to the discharge levels. To store 30 devices during 10 years, a space with 6,370 cm3 is necessary. The laboratory has enough space for this storage. Thus, the radioactive waste management can be performed through the R&R (retain and retard) system safely.
  • Resumo IPEN-doc 26914
    New methodology for binding Iodine-125 onto silver for brachytherapy sources manufacture
    2017 - SOUZA, C.D. de; ROSTELATO, M.C.M.; CARDOSO, R.M.; ARAKI, K.; MOURA, J.
    Purpose: Cancer is a major health care problem in Brazil and the world. The Brazil’s National Institute for Cancer estimates around 60,000 new prostate cancer cases for 2017. We are assembling a laboratory for production of iodine-125 sources used in prostate brachytherapy in Brazil, since the imported treatment is extremely expensive, thus only available in the private healthcare sector. There are several challenges when developing a laboratory to produce radioactive sources. From choosing a prototype to radiation safety, the task is enormous. The whole production line is full of new process and innovations. Among those, a new chemical reaction that deposit iodine-125 onto silver (core) was developed. This paper presents a new reaction for binding iodine-125 into a silver core. The fixation percentage was calculated by measuring the activity in an ionization chamber. This methodology will be implemented at the iodine-125 sources manufacture laboratory. Methods: Silver cores are washed with an etching solution (100% sulfuric acid) for 5 minutes with sonication. The cores were then placed in sodium sulfate for at least 3 days. They went from a silver matte to a black color. The reaction was allowed to proceed overnight. Each core was individually measured. Results: The yield was 69.2% 7.1%. Considering the silver attenuation is around 20% the results were consider satisfactory. Conclusion: By maximize the reaction yield, we will be able to generate a less costly product that will be available through our public healthcare.
  • Resumo IPEN-doc 26913
    New core configuration for producing Iodine 125 seeds
    2017 - RODRIGUES, B.T.; ROSTELATO, M.C.M.; SOUZA, C.D. de; ZEITUNI, C.; MOURA, E.S. de; SOUZA, D.B. de; TOZETTI, C.; RODRIGUES, B.
    Purpose: Cancer is one of the most complex public health problems. Prostate cancer is the second most common among men. In prostate brachytherapy use Iodine-125, which is fixated on a silver substrate, then inserted and sealed in a titanium capsule. This work proposes a new source configuration using epoxy resin substrate. Methods: Comparation and analysis methods were used to define the methodology for combining iodine-125 in polymers. The parameters were immersion time, reaction type, concentration of the adsorption solution, specific activity of the radioactive solution, need for carrier and chemical form of radioactive iodine. Results: The methodology developed with an epoxy resin was very good. The final radioactive intake on the resin was higher than 80%. The immobilization of the radioactive solution occurred in the matrix, without any loss or deposition of undesirable materials on its surface, as evidenced by the smear test. The material maintains its integrity when autoclaved at 140 °C. The curing process of the resin was 40 minutes. With the value of the initial activity of the Iodine solution by mass (774.2 lCi/g), it was possible to calculate the immobilization efficiency Average of 680 lCi/g. The immersion test in distilled water at room temperature did not exceed the limit allowed by ISO 9978, which is 5 nCi (185 Bq), proof of no leakage. In a computational simulation by the Monte Carlo Method, PENELOPE, the simulations were consistent with the values adopted by the literature for the GE Healthcare model 6711, which shows the value of the dose rate constant as 0, 965 cGy.U-1.h-1. Conclusion: The effective method for combining iodine-125 in epoxy resin was determinated. The major advantage was the high efficiency percentage fixation, around 82,1 3,2%, and the simplicity and safety of the process.
  • Resumo IPEN-doc 26912
    Methodology for in vivo dosimetry using TLD-100 for radiotherapic treatment
    2017 - RODRIGUES, B.T.; SOUZA, P.D. de; SOUZA, C.D. de; ROSTELATO, M.C.M.; ZEITUNI, C.; NOGUEIRA, B.R.; MARQUES, J. de O.; SOUZA, A.S. de
    Cancer is a public health problem that affects approximately 27 million people worldwide. The most common type in Brazil among men is prostate cancer with 61 thousand cases. There are two forms of radiotherapy treatments that can be used: teletherapy and brachytherapy. Before starting the teletherapy treatment, a planning is done that makes the acquisition of the anatomical information of the patient to then classify the areas of interest. Dosimetry is performed as a quality control to ensure that the calculated dose is equal to that received by the patient. In vivo dosimetry acts as an independent measurement and this work aims at comparing the dosimetry performed using thermoluminescent dosimeters (LiF: Mg, Ti - TLD - 100) with dose values calculated in the planning system (TPS). Methods: All dosimeters were prepared to be used in an anthropomorphic phantom. A selection of dosimeters, 50 micro TLD’s, selected after heat treatment, were then irradiated and a reading was made. A case planned by TPS was selected and compared the dosimetry performed in an anthropomorphic phantom for the same case. Results: All values obtained were within the deviation ( 5%) allowed by the protocol. The results of this work will help to implement a new quality program in the Radiotherapy Service at Hospital das Cl ınicas de S~ao Paulo. Conclusion: The accurate dosimeter selection provided a feasible and reliable evaluation that enabled the comparison.
  • Artigo IPEN-doc 26267
    New gold-198 nanoparticle synthesis to be used in cancer treatment
    2019 - SOUZA, CARLA D. de; ZEITUNI, CARLOS A.; ROSERO, WILMMER A.A.; NOGUEIRA, BEATRIZ R.; ROSTELATO, MARIA E.C.M.
    Gold nanoparticles (NPs) have been intriguing scientists for over 100 years. Recently, they have been studied for new applications such as cancer treatment. Although the synthesis of gold nanoparticles is extensively reported, in the majority of cases the methodology is confused and/or not clear. We describe a new synthesis methodology for radioactive gold‐198 NPs. Gold-198 was activated in IPEN IEA-01 nuclear reactor to a neutron flux with 1013 order. After that, chloroauric acid (HAuCl4) was formed by dissolving the radioactive gold with aqua regia and performing repeated heating cycles. 0.1 mM HAuCl4 containing 100 μL of 1 M NaOH was prepared in a flask equipped with a reflux condenser. The solution was brought to boil and stirred with a PTFE‐coated magnetic stir‐bar. Then 5 mL of sodium citrate was rapidly added. The reaction turns from light yellow to clear, black, dark purple until the solution attained a wine‐red color (2–3 min). Dynamic light scattering (DLS) confirmed 8 nm particles. The presence of gold‐198 (197.968 g/mol; half‐life: 2.69517; decay mode: β‐; average energy: 1.3723 MeV) was confirmed by an ORTEC HPGe detector. DLS was performed after complete decay confirming the 8 nm diameter maintenance. We were able to achieve radioactive gold‐198 NPs and are performing further studies such as: coating reactions, in‐vitro and in‐vivo studies.
  • Artigo IPEN-doc 26242
    Gold nanoparticles stabilized with gum arabic for cancer treatment
    2019 - ROSERO, WILMMER A.A.; NOGUEIRA, BEATRIZ R.; SOUZA, CARLA D. de; GONZALEZ, ANDREZA A.D.C.C.; BARBEZAN, ANGELICA B.; ZEITUNI, CARLOS A.; ROSTELATO, MARIA E.C.M.
    Cancer is a group of diseases characterized by uncontrolled growth and abnormal spread of cells. The number of deaths due to cancer is higher than the ones caused by AIDS, tuberculosis and malaria combined. Among the different options of cancer treatment radiotherapy (teletherapy and brachytherapy) sta nds out. The presence of gold nanoparticles (AuNPs) may enhance energy deposition for teletherapy treatment. The use of nanoparticles for brachytherapy have been studied, and AuNPs is a good option once they can easily permeate tumor vasculature and remain in tumors. However, the tumor uptake of AuNPs may be significantly reduced due the attenuation with the formation of the protein coronas. The objective of this work is present the functionalization of AuNPs with arabic gum (GA). GA is a biocompatible, non toxic, water soluble, natural gum obtained from Acacia senegal tree. In this study, a synthesis of gold nanoparticles (AuNPs), based on Turkevich method, using citrate (NaCit) solution as reducing agent and a HAuCl4 solution, under vigorously stirring and boiling temperature, going from a light yellow to a wine red in three minutes. The functionalization of the nanoparticles was performed with Arabic gum solutions, in three different concentrations , which were a dded under stirring to the AuNPs already obtai ned. Samples were characterized to measure the size of the samples. Lower concentrations o GA in the solution presented smaller coated particles (up to 45 nm).
  • Resumo IPEN-doc 25646
    New gold-198 nanoparticle synthesis to be used in cancer treatment
    2018 - SOUZA, C.D. de; ROSTELATO, M.C.M.; ZEITUNI, C.; GONZALEZ, A. del C.C.; NOGUEIRA, B.R.
  • Artigo IPEN-doc 24374
    Waste management protocols for iridium-192 sources production laboratory used in cancer treatment in Brazil
    2017 - ROSTELATO, M.E.C.M.; SOUZA, D.C.B.; SOUZA, C.D.; ZEITUNI, C.A.; VICENTE, R.; COSTA, O.L.; RODRIGUES, B.T.; MOURA, J.A.; FEHER, A.; MOURA, E.S.; MARQUES, J.R.O.; CARVALHO, V.S.; NOGUEIRA, B.R.
    Objective: The iridium-192 wired sources production results in radioactive waste that needs to follow the guidelines. The aim of this study is to do a radioactive waste management of wastes from iridium-192 sources production laboratory used in cancer treatment in Brazil. Methods: The wire is acquired in an alloy form with 80% platinum and 20% iridium encapsulated with 100%. Electronic microscopy, X-ray fluorescence, and posterior iridium neutron activation (to determine contaminants) are performed to ensure quality. A 50-cm twisted wire is placed in an aluminum tube. The tube is sealed and place inside the reactor irradiator system and is left for decay during 30 hours to wait for the others undesired activation products to decay. The wire is prepared for treatment with 48 cm length with 192 mCi maximum activity. All the equipment use inside the hot cell must be calibrated every four months. All the waste must be removed from the hot cell. Results: The solid waste is previously characterized in the analysis phase. The contaminants are already known and they are insignificant due to their fast half-life. The iridium-192 half-life is 74.2 days, classified as very short half-life waste. The reminiscent activity is 8mCi. Conclusion: The radioactive waste generated during the I192 wires production is solid, was a short half-life and a weakly activity of 9.7 GBq.g-1. According to the standards, this activity is too high to be discarded into the environment (limit 10 Bq.g-1). The waste must be managed by the R&R (retain e retard) system.
  • Artigo IPEN-doc 24114
    Study and methodologies for fixing epoxy resin in radioactive sources used for brachytherapy
    2017 - RODRIGUES, BRUNA T.; ROSTELATO, MARIA E.C.M.; SOUZA, CARLA D.; TOZETTI, CINTIA A.; ZEITUNI, CARLOS A.; NOGUEIRA, BEATRIZ R.; SILVA, JOSE T.; K. JUNIOR, DIB; FERNANDES, VAGNER; SOUZA, RAQUEL V.; ABREU, RODRIGO T.
    The World Health Organization (WHO) estimates that the number of new cancer cases worldwide will reach 15 million by 2020. The disease is already the second leading cause of death worldwide, being behind only cardiovascular disease. It is unquestionable that it is a public health problem, especially among developing countries. Prostate cancer is the most common among men, approximately 28.6%. The choice of type of treatment for prostate cancer should consider several factors such as: tumor size and extent, apparent aggressiveness (pathological characteristics), age, health. Among the methods applied, brachytherapy has been used in the initial and intermediate stages of the disease. Brachytherapy is a safe and effective treatment for localized prostate cancer. Brachytherapy is a form of radiotherapy in which radioactive seeds are placed in contact with or within the organ being treated. This technique allows a large dose of radiation to be released only on the target tumor that protects healthy surrounding tissues. Sources may have different shapes and sizes, but the one used for prostate cancer is usually 4.5 mm in length and 0.8 mm in diameter. About 80 to 120 seeds can be used per patient. Iodine-125 is the radioisotope most used in brachytherapy of the prostate, it emits 35,49keV X-rays in 100% of the decays, with average energy of 29 keV. The treatment of prostate cancer with permanent implantation of iodine-125 seeds has grown dramatically in the world in recent years. Most patients can return to normal life within three days with little or no pain.