LUCIANO BACHMANN

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 10 de 18
  • Resumo IPEN-doc 08431
    Chemical Modification of bovine dental enamel irradiated with holmiun laser
    2004 - EDUARDO, P.L.P.; BACHMANN, L.; SALVADOR, V.L.; ZEZELL, D.M.
    This study investigated Ho:YLF (2,065 mm) effects on dental enamel with regards to the thermal variations in the pulp chamber during irradiation and resistance to demineralization. Twenty samples of bovine enamel were divided: 1) control- acidulated phosphate fluoride (APF) topic application followed by demineralization treatment with lactic acid; 2) Ho:YLF irradiation (100J/cm2) followed by APF and demineralization; 3) Ho:YLF irradiation (350J/cm2) followed by APF and demineralization; 4) Ho:YLF irradiation (450J/cm2) followed by APF and demineralization. All samples were quantified according to their calcium and phosphorous atoms relative concentrations before and after the treatments. X-Ray fluorescence spectrochemical analysis showed an increase on the calcium and phosphorous atoms concentration ratio and therefore the enamel demineralization reduction as a result of the lactic acid treatment in the samples irradiated with the holmium laser followed by the APF (ANOVA, Tukey p<0,01). To evaluate the feasibility of this study for clinical purposes, surfaces morphology were analyzed. Modifications were characterized by melted and re-solidified regions of the enamel, which can changes its permeability and solubility. Temperature changes of ten human pre-molars teeth irradiated with 350 J/cm2 and 450 J/cm2 were also monitored in the pulp chamber in real time. Temperature increases were limited to 4,2° C.
  • Artigo IPEN-doc 20716
    FT-Raman spectroscopic analysis of Nd:YAG and Er, Cr:YSGG laser irradiated enamel for preventive purposes
    2014 - ANA, P.A.; KAUFFMANN, C.M.F.; BACHMANN, L.; SOARES, L.E.S.; MARTIN, A.A.; GOMES, A.S.L.; ZEZELL, D.M.
  • Resumo IPEN-doc 14797
    Changes in crystalline structure in dental enamel irradiated with Er,Cr:YSGG, Ho:YLF and Nd:YAG lasers
    2008 - ZEZELL, D.M.; ANA, P.A.; ROSA, K.; CRAIEVICH, A.; BACHMANN, L.
  • Resumo IPEN-doc 14584
    Effects of lasers on chemical composition of anamel and dentin
    2009 - ZEZELL, DENISE; ANA, PATRICIA; ALBERO, FELIPE; BACHMANN, LUCIANO
    Background: Laser irradiation is a promising alternative for caries prevention due to the possibility of changing the microstructure of dental hard tissues. However, the chemical changes promoted by infrared lasers interaction with dental hard tissue are still unclear. This study investigated chemical and erystallographic changes on enamel and dentin after irradiation with Nd:YAG and Fr,Cr:YSGG lasers aiming caries prevention, Study: Thirty enamel and dentin slabs were obtained from bovine teeth, and wore randomly distributted into six groups: G1- unlased enamel; G2- unlased dentin; G3- enamel irradiated with Er,Cr:YSGG laser (o =2.78 ym) at 5.6 J/em? (25 mJ/pulse); Gd- dentin irradiated with Er,Cr:YSGG at 2.8 J/em? (12.5 mJ/ pulse); G5- enamel irradiated with Nd:YAG laser (> = 1.064 ym) at 84.9 J/em? (60 mJ/pulze), and G6- dentin irradiated with Nd:YAG at 84.9 J/em? (60 md/pulse). Sample surfaces were analyzed by micro-Fourier transform infrared spectroscopy (11-FTIR) at 4000-650 cm ' range and with 4 em”* resolution. After p-FTIR, samples were also evaluated by X-ray diffraction at a Synchrotron monochromatic X-ray beam (Cu-Ka, wavelength of 0.0954 nm). Results: Irradiation with Er,CAYSGG laser promoted the decrease on carbonate content of enamel. After Nd:YAG irradiation, it was observed a significant decrease (p < 0.05) of all organic content of enamel, Er,Cr:YSGG and Nd:YAG lasers promoted a significant decrease on the contents of amides 1 and carbonate of dentin. Both laser irradiations also promoted the formation of tricalcium and tetracalcium phosphates, and also a significant increase (p < 0.05) on the crystal growth of the apatite of enamel and dentin. Conclusion: In conclusion, high IR intensity laser irradiation changes mainly the organic and carbonate contents of both enamel and dentin, as well promotes an increase in crystallite sizes and the formation of new crystallographic phases. These changes can be correlated with the mechanism of the improved resistance of these tissues to demineralization observed in our previous studies.
  • Resumo IPEN-doc 15528
    FT-raman spectroscopy analysis of Nd:YAG and Er, Cr:YSGG laser irradiated enamel
    2006 - ZEZELL, D.M.; ANA, P.; KAUFFMAN, C.M.F.; MARTIN, A.A.; GOMES, A.L.; CURY, J.A.; BACHMANN, L.
  • Resumo IPEN-doc 15325
    Efeitos quimicos e cristalinos da irradiacao por laser infravermelho de alta instensidade no esmalte dental
    2009 - ZEZELL, D.M.; ANA, P.A.; BACHMANN, L.; ZAMATARO, C.B.
  • Resumo IPEN-doc 16400
    Effects of lasers on chemical composition on enamel and dentin
    2009 - ZEZELL, DENISE; ANA, PATRICIA; ALBERO, FELIPE; BACHMANN, LUCIANO
  • Resumo IPEN-doc 14742
    Effect of infrared lasers on chemical and crystalline properties of enamel
    2009 - ZEZELL, D.M.; ANA, P.A.; ALBERO, F.G.; CURY, J.A.; BACHMANN, L.
  • Artigo IPEN-doc 13458
    Electron spin resonance-native signal in thermally treated dental tissue
    2003 - BACHMANN, LUCIANO; SANTOS, ADEVAILTON B. dos; BAFFA, OSWALDO; ZEZELL, DENISE M.