RODRIGO TEIXEIRA BENTO
2 resultados
Resultados de Busca
Agora exibindo 1 - 2 de 2
Artigo IPEN-doc 27162 Effect of growth parameters on the photocatalytic performance of TiO2 films prepared by MOCVD2020 - MARCELLO, BIANCA A.; CORREA, OLANDIR V.; BENTO, RODRIGO T.; PILLIS, MARINA F.The present study evaluated the main factors that influence the photocatalytic activity of titanium dioxide (TiO2) films grown by metalorganic chemical vapor deposition (MOCVD) at 400 and 500 °C, in different growth times. The photocatalytic behavior was analyzed by measuring the methyl orange dye degradation at different pH values. Structural and morphological characteristics, and the recyclability of the catalysts for several cycles were also investigated. Anatase phase was identified in all films. The higher photodegradation performances were obtained at acidic pH. The results demonstrated that the photocatalyst thickness is an important parameter in heterogenous photocatalysis. The best photocatalytic result occurred for the 395 nm-thick TiO2 film grown at 400 °C, which presented 65.3% of the dye degradation under UV light. The recyclability experiments demonstrated that the TiO2 films grown by MOCVD present a great stability after several photocatalytic cycles, which allows their practical application for water treatment with high efficiency.Resumo IPEN-doc 26532 Effect of the thickness of TiO2 films on the photodegration of methyl orange dye2019 - MARCELLO, BIANCA A.; CORREA, OLANDIR V.; BENTO, RODRIGO T.; PILLIS, MARINA F.The increase of the disposed of azo dyes such as methyl orange (MO) by textile and allied industries in the wastewater results in a significant increase of pollutants, which requires the development of new degradation materials and techniques to purify the effluents [1]. Heterogeneous photocatalysis using titanium dioxide (TiO2) films is a highly efficient oxidative process for water treatment [2]. The TiO2 films were grown on borosilicate substrates by metalorganic chemical vapor deposition (MOCVD) at 500°C, and the growth time was controlled in order to obtain films with the thickness of 400, 600 1100 and 2100 nm. MO dye degradation was evaluated by using anatase-TiO2 as photocatalyst under UV light. The pH of the solutions was set on 2. The TiO2 films presented uniform thickness and well-defined columnar structure that grow perpendicular to the substrate surface. The increasing of the growth time increases both the thickness and the mean grain size of the films. All the films presented the formation of anatase-TiO2 crystalline phase grown preferentially oriented at (112). The results showed that the photocatalytic behavior of the films decreased with increasing the film thickness. The photocatalytic efficiency for the 400, 600, 1100 and 2100 nm films tested at pH 2 are respectively 39.2%, 30.2 %, 24.4 % and 12.2 %. When the thickness of the films augments, the mobility of the electrons is impaired due to the increase of the film opacity, which limits the light penetration through the catalyst, and difficults the diffusion of charge carriers required to activate the semiconductor surface. TiO2 catalysts grown by MOCVD technique is a practical promising application for the water treatment.