ROBERTO NAVARRO DE MESQUITA

Resumo

Possui graduação em Física pela Universidade Estadual de Campinas (1987), mestrado em Física pela Universidade Estadual de Campinas (1991) e doutorado em Engenharia Mecânica pela Universidade de São Paulo (2002). Atualmente é tecnologista pleno da Comissão Nacional de Energia Nuclear. Tem experiência na área de Ciência da Computação, com ênfase em Sistemas de Inteligência Artificial, atuando principalmente nos seguintes temas: inteligência artificial, diagnóstico de defeitos em tubos, correntes parasitas (ECT), reconhecimento de padrões em imagens. (Texto extraído do Currículo Lattes em 27 dez. 2021)

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 1 de 1
  • Artigo IPEN-doc 28148
    Characterization of polyacrylonitrile thermal stabilization process for carbon fiber production using intelligent algorithms
    2021 - TERRA, BRUNA M.; ANDRADE, DELVONEI A. de; MESQUITA, ROBERTO N. de
    Composite materials have widened their application range in recent years. The polymeric composite reinforced with carbon fibers can be described as a high-performance structural material which merges two important features: low weight and mechanical stability. Carbon fiber production which uses polyacrylonitrile as precursor is composed of many stages such as polymerization, spinning, thermal stabilization, carbonization, and surface treatment. Thermal stabilization is the critical stage of this production process, during which aromatic rings are generated, and therefore the main factor for the carbon fiber structure definition and thus for this material quality. A thermal stabilization model using intelligent algorithms was developed aiming a possible optimization of the production process and consequent cost reduction. This work was based on real experimental data obtained from a composite material production pilot plant. A qualitative analysis was initially performed using Self-Organizing Maps trained with variables of fiber production reagents and process. Thereafter, a supervised training with feedforward backpropagation neural network was used for a quantitative analysis. Based on this quantitative analysis, the carbon fiber thermal stabilization process was simulated, obtaining 2.98% and 2.48% mean errors relative to experimental results of Volumetric Density and FTIR Conversion index, respectively.