RODRIGO PIRES DA SILVA
3 resultados
Resultados de Busca
Agora exibindo 1 - 3 de 3
Artigo IPEN-doc 30769 Optimized interfaces for PBI-based high-temperature direct ethanol fuel cells2024 - SILVA, RODRIGO P. da; MATOS, BRUNO R. de; FONSECA, FABIO C.; SANTIAGO, ELISABETE I.The present study combines innovative strategies aiming at enhanced performance of direct ethanol fuel cells (DEFC) by modifying interfaces at both electrodes and electrolyte. Increasing the operating temperature to 180 °C to promote faster kinetics and thermally activated processes taking place in DEFC was possible by using phosphoric-acid-doped PBI (polybenzimidazole) composite electrolytes. The properties of the PBI electrolytes were improved by adding SiO2 as an inorganic second phase, promoting an increase in the proton conductivity and inhibiting ethanol crossover. Optimizing electrode reactions by increasing the triple-phase boundary was demonstrated by using a powdered-based PBI “ionomeric” concept to boost the performance of the proton exchange membrane fuel cell. The electrochemical characterization of the high-temperature direct ethanol fuel cells (HT-DEFC) showed that combining the strategies for the optimized electrode and electrolyte was crucial for increasing the performance of membrane electrode assemblies operating at 180 °C.Artigo IPEN-doc 29609 Numerical validation of direct ethanol fuel cell operating at high temperature2023 - PANESI, A.R.Q.; SILVA, R.P.; SANTIAGO, E.I.In the present work, a three-dimensional steady-state model was developed to analyze the performance of high-temperature direct ethanol fuel cell (HT-DEFC) based on polybenzimidazole (PBI) electrolytes. A non-isothermal model of a HT-DEFC setup using a PBI/H3PO4 membrane was employed using computational fluid dynamics (CFD). This work is aiming at a validation of experimental data of HT-DEFC prototypes based on the simulation of polarization curves. The model predicts the mole concentration of H3PO4, heat and current density distributions, as well as mass fraction ethanol during operation at 180 °C. The heat transfer model was coupled to the electrochemical and mass transport, allowing that a particular heating configuration was investigated considering the temperature distribution on the PBI membrane. We have found that temperature and relative humidity (RH) are mostly related to PBI properties resulting from H3PO4 lixiviation and conductivity decreasing as well as ethanol crossover strongly interferes on the oxygen reduction reaction (ORR) rate, leading to poor HT-DEFC performance.Dissertação IPEN-doc 28019 Desenvolvimento de membranas não fluoradas a base de PBI para aplicação em células a combustível de etanol direto de alta temperatura2021 - SILVA, RODRIGO P. daA maioria das células a combustível de membrana de troca protônica (PEMFC) utiliza o Nafion® como eletrólito. Como possui um mecanismo de condução de prótons dependente de moléculas de água, estas células têm uma temperatura de operação limitada até 80°C. O aumento da temperatura de operação de uma célula PEMFC é desejado devido à contribuição da temperatura na aceleração das reações eletroquímicas, que são processos termoativados. Neste contexto, as membranas PBI (polibenzimidazol) dopadas com ácido fosfórico têm sido consideradas um polímero base bastante promissor para eletrólitos sólidos operantes em alta temperatura, devido à combinação de condução de prótons satisfatória em condições de baixa umidade relativa e excelente estabilidade térmica. No entanto, membranas baseadas em PBI apresentam algumas desvantagens, tais como lixiviação do ácido (veículo condutor), diminuição de sua resistência mecânica, permeabilidade aos combustíveis utilizados em PEMFC operante em alta temperatura (HT-PEMFC), permitindo que uma parte migre do ânodo para o cátodo da célula (crossover) e diminuindo assim a eficiência e o desempenho global do dispositivo. Neste contexto, o objetivo do trabalho foi o desenvolvimento e otimização de membranas compósitas a base de PBI e óxido de silício (SiO2), que além de atuar como reforço mecânico, pode contribuir na mitigação do crossover e, dessa forma, se apresentar como uma alternativa ao Nafion como eletrólito sólido em células a combustível de etanol direto de alta temperatura (HT-DEFC). Nesse sentido, membranas puras de PBI e compósitos PBI-SiO2 com diferentes frações de SiO2 (2,5%, 5%, e 10%) foram sintetizadas e caracterizadas por Raman, termogravimetria, microscopia eletrônica de varredura e espectroscopia de impedância eletroquímica. Por fim, as membranas foram avaliadas em protótipos de HT-DEFC a 180°C após parametrização e otimização dos componentes dos conjuntos eletrodos-membranas (MEA). Ainda, eletrocatalisadores anódicos baseados em Pt/C, PtSn/C e PtRu/C foram estudados com o objetivo de avaliar o efeito da natureza do catalisador no desempenho de HT-DEFCs.